Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 170(1): 14-16, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666116

RESUMO

A long-standing question in cell biology is how endocytic vesicles and tubules detach from the plasma membrane in the absence of constriction by dynamin. In this issue of Cell, Simunovic et al. describe an elegant biophysical model in which friction between lipids and BAR-domain proteins drives the scission of elongating membrane tubules.


Assuntos
Endocitose , Fricção , Membrana Celular , Dinaminas , Vesículas Transportadoras
2.
Proc Natl Acad Sci U S A ; 121(23): e2322592121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805280

RESUMO

In supercooled liquids, dynamical facilitation refers to a phenomenon where microscopic motion begets further motion nearby, resulting in spatially heterogeneous dynamics. This is central to the glassy relaxation dynamics of such liquids, which show super-Arrhenius growth of relaxation timescales with decreasing temperature. Despite the importance of dynamical facilitation, there is no theoretical understanding of how facilitation emerges and impacts relaxation dynamics. Here, we present a theory that explains the microscopic origins of dynamical facilitation. We show that dynamics proceeds by localized bond-exchange events, also known as excitations, resulting in the accumulation of elastic stresses with which new excitations can interact. At low temperatures, these elastic interactions dominate and facilitate the creation of new excitations near prior excitations. Using the theory of linear elasticity and Markov processes, we simulate a model, which reproduces multiple aspects of glassy dynamics observed in experiments and molecular simulations, including the stretched exponential decay of relaxation functions, the super-Arrhenius behavior of relaxation timescales as well as their two-dimensional finite-size effects. The model also predicts the subdiffusive behavior of the mean squared displacement (MSD) on short, intermediate timescales. Furthermore, we derive the phonon contributions to diffusion and relaxation, which when combined with the excitation contributions produce the two-step relaxation processes, and the ballistic-subdiffusive-diffusive crossover MSD behaviors commonly found in supercooled liquids.

3.
Proc Natl Acad Sci U S A ; 120(14): e2209144120, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37000846

RESUMO

Below the onset temperature To, the equilibrium relaxation time of most glass-forming liquids exhibits glassy dynamics characterized by a super-Arrhenius temperature dependence. In this supercooled regime, the relaxation dynamics also proceeds through localized elastic excitations corresponding to hopping events between inherent states, i.e., potential-energy-minimizing configurations of the liquid. Despite its importance in distinguishing the supercooled regime from the high-temperature regime, the microscopic origin of To is not yet known. Here, we construct a theory for the onset temperature in two dimensions and find that an inherent-state melting transition, described by the binding-unbinding transition of dipolar elastic excitations, delineates the supercooled regime from the high-temperature regime. The corresponding melting transition temperature is in good agreement with the onset temperature found in various two-dimensional (2D) atomistic models of glass formers and an experimental binary colloidal system confined to a water-air interface. Additionally, we find the predictions for the renormalized elastic moduli to agree with the experimentally observed values for the latter 2D colloidal system. We further discuss the predictions of our theory on the displacement and density correlations at supercooled conditions, which are consistent with observations of the Mermin-Wagner fluctuations in experiments and molecular simulations.

4.
Soft Matter ; 20(13): 2998-3006, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482724

RESUMO

Phosphatidic acid (PA) is an anionic lipid that preferentially interacts with proteins in a diverse set of cellular processes such as transport, apoptosis, and neurotransmission. One such interaction is that of the PA lipids with the proteins of voltage-sensitive ion channels. In comparison to several other similarly charged anionic lipids, PA lipids exhibit much stronger interactions. Intrigued and motivated by this finding, we sought out to gain deeper understanding into the electrostatic interactions of anionic lipids with charged proteins. Using the voltage sensor domain (VSD) of the KvAP channel as a model system, we performed long-timescale atomistic simulations to analyze the interactions of POPA, POPG, and POPI lipids with arginines (ARGs). Our simulations reveal two mechanisms. First, POPA is able to interact not only with surface ARGs but is able to snorkel and interact with a buried arginine. POPG and POPI lipids on the other hand show weak interactions even with both the surface and buried ARGs. Second, deprotonated POPA with -2 charge is able to break the salt-bridge connection between VSD protein segments and establish its own electrostatic bond with the ARG. Based on these findings, we propose a headgroup size hypothesis for preferential solvation of proteins by charged lipids. These findings may be valuable in understanding how PA lipids could be modulating kinematics of transmembrane proteins in cellular membranes.


Assuntos
Arginina , Ácidos Fosfatídicos , Modelos Moleculares , Eletricidade Estática , Membrana Celular
5.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658362

RESUMO

The motion of nanoparticles near surfaces is of fundamental importance in physics, biology, and chemistry. Liquid cell transmission electron microscopy (LCTEM) is a promising technique for studying motion of nanoparticles with high spatial resolution. Yet, the lack of understanding of how the electron beam of the microscope affects the particle motion has held back advancement in using LCTEM for in situ single nanoparticle and macromolecule tracking at interfaces. Here, we experimentally studied the motion of a model system of gold nanoparticles dispersed in water and moving adjacent to the silicon nitride membrane of a commercial LC in a broad range of electron beam dose rates. We find that the nanoparticles exhibit anomalous diffusive behavior modulated by the electron beam dose rate. We characterized the anomalous diffusion of nanoparticles in LCTEM using a convolutional deep neural-network model and canonical statistical tests. The results demonstrate that the nanoparticle motion is governed by fractional Brownian motion at low dose rates, resembling diffusion in a viscoelastic medium, and continuous-time random walk at high dose rates, resembling diffusion on an energy landscape with pinning sites. Both behaviors can be explained by the presence of silanol molecular species on the surface of the silicon nitride membrane and the ionic species in solution formed by radiolysis of water in presence of the electron beam.

6.
Phys Rev Lett ; 128(6): 068101, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213207

RESUMO

We analyze the stability of biological membrane tubes, with and without a base flow of lipids. Membrane dynamics are completely specified by two dimensionless numbers: the well-known Föppl-von Kármán number Γ and the recently introduced Scriven-Love number SL, respectively quantifying the base tension and base flow speed. For unstable tubes, the growth rate of a local perturbation depends only on Γ, whereas SL governs the absolute versus convective nature of the instability. Furthermore, nonlinear simulations of unstable tubes reveal an initially localized disturbance result in propagating fronts, which leave a thin atrophied tube in their wake. Depending on the value of Γ, the thin tube is connected to the unperturbed regions via oscillatory or monotonic shape transitions-reminiscent of recent experimental observations on the retraction and atrophy of axons. We elucidate our findings through a weakly nonlinear analysis, which shows membrane dynamics may be approximated by a model of the class of extended Fisher-Kolmogorov equations. Our study sheds light on the pattern selection mechanism in axonal shapes by recognizing the existence of two Lifshitz points, at which the front dynamics undergo steady-to-oscillatory bifurcations.


Assuntos
Lipídeos , Membrana Celular , Membranas
7.
J Chem Phys ; 157(18): 184111, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379761

RESUMO

A central object in the computational studies of rare events is the committor function. Though costly to compute, the committor function encodes complete mechanistic information of the processes involving rare events, including reaction rates and transition-state ensembles. Under the framework of transition path theory, Rotskoff et al. [Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference, Proceedings of Machine Learning Research (PLMR, 2022), Vol. 145, pp. 757-780] proposes an algorithm where a feedback loop couples a neural network that models the committor function with importance sampling, mainly umbrella sampling, which collects data needed for adaptive training. In this work, we show additional modifications are needed to improve the accuracy of the algorithm. The first modification adds elements of supervised learning, which allows the neural network to improve its prediction by fitting to sample-mean estimates of committor values obtained from short molecular dynamics trajectories. The second modification replaces the committor-based umbrella sampling with the finite-temperature string (FTS) method, which enables homogeneous sampling in regions where transition pathways are located. We test our modifications on low-dimensional systems with non-convex potential energy where reference solutions can be found via analytical or finite element methods, and show how combining supervised learning and the FTS method yields accurate computation of committor functions and reaction rates. We also provide an error analysis for algorithms that use the FTS method, using which reaction rates can be accurately estimated during training with a small number of samples. The methods are then applied to a molecular system in which no reference solution is known, where accurate computations of committor functions and reaction rates can still be obtained.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Temperatura , Aprendizado de Máquina Supervisionado
8.
Proc Natl Acad Sci U S A ; 116(50): 25087-25096, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767758

RESUMO

The motility mechanism of certain prokaryotes has long been a mystery, since their motion, known as gliding, involves no external appendages. The physical principles behind gliding still remain poorly understood. Using myxobacteria as an example of such organisms, we identify here the physical principles behind gliding motility and develop a theoretical model that predicts a 2-regime behavior of the gliding speed as a function of the substrate stiffness. Our theory describes the elasto-capillary-hydrodynamic interactions between the membrane of the bacteria, the slime it secretes, and the soft substrate underneath. Defining gliding as the horizontal translation under zero net force, we find the 2-regime behavior is due to 2 distinct mechanisms of motility thrust. On mildly soft substrates, the thrust arises from bacterial shape deformations creating a flow of slime that exerts a pressure along the bacterial length. This pressure in conjunction with the bacterial shape provides the necessary thrust for propulsion. On very soft substrates, however, we show that capillary effects must be considered that lead to the formation of a ridge at the slime-substrate-air interface, thereby creating a thrust in the form of a localized pressure gradient at the bacterial leading edge. To test our theory, we perform experiments with isolated cells on agar substrates of varying stiffness and find the measured gliding speeds in good agreement with the predictions from our elasto-capillary-hydrodynamic model. The mechanisms reported here serve as an important step toward an accurate theory of friction and substrate-mediated interactions between bacteria proliferating in soft media.


Assuntos
Fenômenos Fisiológicos Bacterianos , Modelos Biológicos , Movimento/fisiologia , Fenômenos Biomecânicos/fisiologia , Fricção , Hidrodinâmica , Myxococcus xanthus/fisiologia
9.
Phys Rev Lett ; 127(17): 178001, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739294

RESUMO

Diffusive transport is characterized by a diffusivity tensor which may, in general, contain both a symmetric and an antisymmetric component. Although the latter is often neglected, we derive Green-Kubo relations showing it to be a general characteristic of random motion breaking time-reversal and parity symmetries, as encountered in chiral active matter. In analogy with the odd viscosity appearing in chiral active fluids, we term this component the odd diffusivity. We show how odd diffusivity emerges in a chiral random walk model, and demonstrate the applicability of the Green-Kubo relations through molecular dynamics simulations of a passive tracer particle diffusing in a chiral active bath.

10.
J Chem Phys ; 155(4): 044504, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34340382

RESUMO

A new connection between the structure and dynamics in glass-forming liquids is presented. We show how the origin of spatially localized excitations, as defined by the dynamical facilitation (DF) theory, can be understood from a structure-based framework. This framework is constructed by associating excitation events in the DF theory to hopping events between energy minima in the potential energy landscape (PEL). By reducing the PEL to an equal energy well picture and applying a harmonic approximation, we develop a field theory to describe elastic fluctuations about inherent states, which are energy minimizing configurations of the PEL. We model an excitation as a shear transformation zone (STZ) inducing a localized pure shear deformation onto an inherent state. We connect STZs to T1 transition events that break the elastic bonds holding the local structure of an inherent state. A formula for the excitation energy barrier, denoted as Jσ, is obtained as a function of inherent-state elastic moduli and the radial distribution function. The energy barrier from the current theory is compared to the one predicted by the DF theory where good agreement is found in various two-dimensional continuous poly-disperse atomistic models of glass formers. These results strengthen the role of structure and elasticity in driving glassy dynamics through the creation and relaxation of localized excitations.

11.
J Chem Phys ; 154(24): 244502, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241373

RESUMO

Treating water as a linearly responding dielectric continuum on molecular length scales allows very simple estimates of the solvation structure and thermodynamics for charged and polar solutes. While this approach can successfully account for basic length and energy scales of ion solvation, computer simulations indicate not only its quantitative inaccuracies but also its inability to capture some basic and important aspects of microscopic polarization response. Here, we consider one such shortcoming, a failure to distinguish the solvation thermodynamics of cations from that of otherwise-identical anions, and we pursue a simple, physically inspired modification of the dielectric continuum model to address it. The adaptation is motivated by analyzing the orientational response of an isolated water molecule whose dipole is rigidly constrained. Its free energy suggests a Hamiltonian for dipole fluctuations that accounts implicitly for the influence of higher-order multipole moments while respecting constraints of molecular geometry. We propose a field theory with the suggested form, whose nonlinear response breaks the charge symmetry of ion solvation. An approximate variational solution of this theory, with a single adjustable parameter, yields solvation free energies that agree closely with simulation results over a considerable range of solute size and charge.

12.
Proc Natl Acad Sci U S A ; 115(39): E9031-E9040, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30206153

RESUMO

In this paper, we report that notions of topological protection can be applied to stationary configurations that are driven far from equilibrium by active, dissipative processes. We consider two physically disparate systems: stochastic networks governed by microscopic single-particle dynamics, and collections of driven interacting particles described by coarse-grained hydrodynamic theory. We derive our results by mapping to well-known electronic models and exploiting the resulting correspondence between a bulk topological number and the spectrum of dissipative modes localized at the boundary. For the Markov networks, we report a general procedure to uncover the topological properties in terms of the transition rates. For the active fluid on a substrate, we introduce a topological interpretation of fluid dissipative modes at the edge. In both cases, the presence of dissipative couplings to the environment that break time-reversal symmetry are crucial to ensuring topological protection. These examples constitute proof of principle that notions of topological protection do indeed extend to dissipative processes operating out of equilibrium. Such topologically robust boundary modes have implications for both biological and synthetic systems.


Assuntos
Hidrodinâmica , Modelos Teóricos
13.
Biophys J ; 119(6): 1065-1077, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32860742

RESUMO

In various biological processes such as endocytosis and caveolae formation, the cell membrane is locally deformed into curved morphologies. Previous models to study membrane morphologies resulting from locally induced curvature often only consider the possibility of axisymmetric shapes-an indeed unphysical constraint. Past studies predict that the cell membrane buds at low resting tensions and stalls at a flat pit at high resting tensions. In this work, we lift the restriction to axisymmetry to study all possible membrane morphologies. Only if the resting tension of the membrane is low, we reproduce axisymmetric membrane morphologies. When the resting tension is moderate to high, we show that 1) axisymmetric membrane pits are unstable and 2) nonaxisymmetric ridge-shaped structures are energetically favorable. Furthermore, we find the interplay between intramembrane viscous flow and the rate of induced curvature affects the membrane's ability to transition into nonaxisymmetric ridges and axisymmetric buds. In particular, we show that axisymmetric buds are favored when the induced curvature is rapidly increased, whereas nonaxisymmetric ridges are favored when the curvature is slowly increased. Our results hold relevant implications for biological processes such as endocytosis and physical phenomena like phase separation in lipid bilayers.


Assuntos
Endocitose , Bicamadas Lipídicas , Membrana Celular , Membranas , Viscosidade
14.
J Chem Phys ; 152(20): 201102, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486675

RESUMO

Active fluids, which are driven at the microscale by non-conservative forces, are known to exhibit novel transport phenomena due to the breaking of time reversal symmetry. Recently, Epstein and Mandadapu [arXiv:1907.10041 (2019)] obtained Green-Kubo relations for the full set of viscous coefficients governing isotropic chiral active fluids, including the so-called odd viscosity, invoking Onsager's regression hypothesis for the decay of fluctuations in active non-equilibrium steady states. In this Communication, we test these Green-Kubo relations using molecular dynamics simulations of a canonical model system consisting of actively torqued dumbbells. We find the resulting odd and shear viscosity values from the Green-Kubo relations to be in good agreement with values measured independently through non-equilibrium molecular dynamics flow simulations. This provides a test of the Green-Kubo relations and lends support to the application of the Onsager regression hypothesis in relation to viscous behaviors of active matter systems.

15.
Phys Rev Lett ; 123(10): 100602, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573293

RESUMO

We present a model for glassy dynamics in supercooled liquid mixtures. Given the relaxation behavior of individual supercooled liquids, the model predicts the relaxation times of their mixtures as temperature is decreased. The model is based on dynamical facilitation theory for glassy dynamics, which provides a physical basis for relaxation and vitrification of a supercooled liquid. This is in contrast to empirical linear interpolations such as the Gordon-Taylor equation typically used to predict glass transition temperatures of liquid mixtures. To understand the behavior of supercooled liquid mixtures we consider a multicomponent variant of the kinetically constrained East model in which components have a different energy scale and can also diffuse when locally mobile regions, i.e., excitations, are present. Using a variational approach we determine an effective single component model with a single effective energy scale that best approximates a mixture. When scaled by this single effective energy, we show that experimental relaxation times of many liquid mixtures all collapse onto the "parabolic law" predicted by dynamical facilitation theory. The model can be used to predict transport properties and glass transition temperatures of mixtures of glassy materials, with implications in atmospheric chemistry, biology, and pharmaceuticals.

16.
J Chem Phys ; 150(16): 164111, 2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31042887

RESUMO

We perform a coarse-graining analysis of the paradigmatic active matter model, active Brownian particles, yielding a continuum description in terms of balance laws for mass, linear and angular momentum, and energy. The derivation of the balance of linear momentum reveals that the active force manifests itself directly as a continuum-level body force proportional to an order parameter-like director field, which therefore requires its own evolution equation to complete the continuum description of the system. We derive this equation, demonstrating in the process that bulk currents may be sustained in homogeneous systems only in the presence of interparticle aligning interactions. Furthermore, we perform a second coarse-graining of the balance of linear momentum and derive the expression for active or swim pressure in the case of mechanical equilibrium.

17.
Phys Rev Lett ; 120(26): 260602, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004722

RESUMO

We demonstrate pretransition effects in space-time in trajectories of systems in which the dynamics displays a first-order phase transition between distinct dynamical phases. These effects are analogous to those observed for thermodynamic first-order phase transitions, most notably the hydrophobic effect in water. Considering the (infinite temperature) East model as an elementary example, we study the properties of "space-time solvation" by examining trajectories where finite space-time regions are conditioned to be inactive in an otherwise active phase. We find that solvating an inactive region of space-time within an active trajectory shows two regimes in the dynamical equivalent of solvation free energy: an "entropic" small solute regime in which uncorrelated fluctuations are sufficient to evacuate activity from the solute, and an "energetic" large solute regime which involves the formation of a solute-induced inactive domain with an associated active-inactive interface bearing a dynamical interfacial tension. We also show that as a result of this dynamical interfacial tension there is a dynamical analog of the hydrophobic collapse that drives the assembly of large hydrophobes in water. We discuss the general relevance of these results to the properties of dynamical fluctuations in systems with slow collective relaxation such as glass formers.

18.
Proc Natl Acad Sci U S A ; 112(32): E4381-9, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216959

RESUMO

The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Flagelos/fisiologia , Proteínas Motores Moleculares/metabolismo , Torque , Fenômenos Biomecânicos , Simulação por Computador , Íons , Modelos Biológicos , Subunidades Proteicas/metabolismo , Prótons , Eletricidade Estática , Termodinâmica
19.
J Chem Phys ; 147(19): 194109, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166113

RESUMO

The equations of hydrodynamics including mass, linear momentum, angular momentum, and energy are derived by coarse-graining the microscopic equations of motion for systems consisting of rotary dumbbells driven by internal torques. In deriving the balance of linear momentum, we find that the symmetry of the stress tensor is broken due to the presence of non-zero torques on individual particles. The broken symmetry of the stress tensor induces internal spin in the fluid and leads us to consider the balance of internal angular momentum in addition to the usual moment of momentum. In the absence of spin, the moment of momentum is the same as the total angular momentum. In deriving the form of the balance of total angular momentum, we find the microscopic expressions for the couple stress tensor that drives the spin field. We show that the couple stress contains contributions from both intermolecular interactions and the active forces. The presence of spin leads to the idea of balance of moment of inertia due to the constant exchange of particles in a small neighborhood around a macroscopic point. We derive the associated balance of moment of inertia at the macroscale and identify the moment of inertia flux that induces its transport. Finally, we obtain the balances of total and internal energy of the active fluid and identify the sources of heat and heat fluxes in the system.

20.
Phys Rev E ; 109(5-1): 054401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907464

RESUMO

The coupling of electric fields to the mechanics of lipid membranes gives rise to intriguing electromechanical behavior, as, for example, evidenced by the deformation of lipid vesicles in external electric fields. Electromechanical effects are relevant for many biological processes, such as the propagation of action potentials in axons and the activation of mechanically gated ion channels. Currently, a theoretical framework describing the electromechanical behavior of arbitrarily curved and deforming lipid membranes does not exist. Purely mechanical models commonly treat lipid membranes as two-dimensional surfaces, ignoring their finite thickness. While holding analytical and numerical merit, this approach cannot describe the coupling of lipid membranes to electric fields and is thus unsuitable for electromechanical models. In a sequence of articles, we derive an effective surface theory of the electromechanics of lipid membranes, called the (2+δ)-dimensional theory, which has the advantages of surface descriptions while accounting for finite thickness effects. The present article proposes a generic dimension reduction procedure relying on low-order spectral expansions. This procedure is applied to the electrostatics of lipid membranes to obtain the (2+δ)-dimensional theory that captures potential differences across and electric fields within lipid membranes. This model is tested on different geometries relevant for lipid membranes, showing good agreement with the corresponding three-dimensional electrostatics theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA