Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JAMIA Open ; 7(2): ooae045, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38818114

RESUMO

Objectives: The Multi-State EHR-Based Network for Disease Surveillance (MENDS) is a population-based chronic disease surveillance distributed data network that uses institution-specific extraction-transformation-load (ETL) routines. MENDS-on-FHIR examined using Health Language Seven's Fast Healthcare Interoperability Resources (HL7® FHIR®) and US Core Implementation Guide (US Core IG) compliant resources derived from the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) to create a standards-based ETL pipeline. Materials and Methods: The input data source was a research data warehouse containing clinical and administrative data in OMOP CDM Version 5.3 format. OMOP-to-FHIR transformations, using a unique JavaScript Object Notation (JSON)-to-JSON transformation language called Whistle, created FHIR R4 V4.0.1/US Core IG V4.0.0 conformant resources that were stored in a local FHIR server. A REST-based Bulk FHIR $export request extracted FHIR resources to populate a local MENDS database. Results: Eleven OMOP tables were used to create 10 FHIR/US Core compliant resource types. A total of 1.13 trillion resources were extracted and inserted into the MENDS repository. A very low rate of non-compliant resources was observed. Discussion: OMOP-to-FHIR transformation results passed validation with less than a 1% non-compliance rate. These standards-compliant FHIR resources provided standardized data elements required by the MENDS surveillance use case. The Bulk FHIR application programming interface (API) enabled population-level data exchange using interoperable FHIR resources. The OMOP-to-FHIR transformation pipeline creates a FHIR interface for accessing OMOP data. Conclusion: MENDS-on-FHIR successfully replaced custom ETL with standards-based interoperable FHIR resources using Bulk FHIR. The OMOP-to-FHIR transformations provide an alternative mechanism for sharing OMOP data.

2.
medRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045364

RESUMO

Objective: The Multi-State EHR-Based Network for Disease Surveillance (MENDS) is a population-based chronic disease surveillance distributed data network that uses institution-specific extraction-transformation-load (ETL) routines. MENDS-on-FHIR examined using Health Language Seven's Fast Healthcare Interoperability Resources (HL7® FHIR®) and US Core Implementation Guide (US Core IG) compliant resources derived from the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) to create a standards-based ETL pipeline. Materials and Methods: The input data source was a research data warehouse containing clinical and administrative data in OMOP CDM Version 5.3 format. OMOP-to-FHIR transformations, using a unique JavaScript Object Notation (JSON)-to-JSON transformation language called Whistle, created FHIR R4 V4.0.1/US Core IG V4.0.0 conformant resources that were stored in a local FHIR server. A REST-based Bulk FHIR $export request extracted FHIR resources to populate a local MENDS database. Results: Eleven OMOP tables were used to create 10 FHIR/US Core compliant resource types. A total of 1.13 trillion resources were extracted and inserted into the MENDS repository. A very low rate of non-compliant resources was observed. Discussion: OMOP-to-FHIR transformation results passed validation with less than a 1% non-compliance rate. These standards-compliant FHIR resources provided standardized data elements required by the MENDS surveillance use case. The Bulk FHIR application programming interface (API) enabled population-level data exchange using interoperable FHIR resources. The OMOP-to-FHIR transformation pipeline creates a FHIR interface for accessing OMOP data. Conclusion: MENDS-on-FHIR successfully replaced custom ETL with standards-based interoperable FHIR resources using Bulk FHIR. The OMOP-to-FHIR transformations provide an alternative mechanism for sharing OMOP data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA