Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 18(10): 1071-1077, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209386

RESUMO

Cell stiffness measurements have led to insights into various physiological and pathological processes1,2. Although many cellular behaviours are influenced by intracellular mechanical forces3-6 that also alter the material properties of the cell, the precise mechanistic relationship between intracellular forces and cell stiffness remains unclear. Here we develop a cell mechanical imaging platform with high spatial resolution that reveals the existence of nanoscale stiffness patterns governed by intracellular forces. On the basis of these findings, we develop and validate a cellular mechanical model that quantitatively relates cell stiffness to intracellular forces. This allows us to determine the magnitude of tension within actin bundles, cell cortex and plasma membrane from the cell stiffness patterns across individual cells. These results expand our knowledge on the mechanical interaction between cells and their environments, and offer an alternative approach to determine physiologically relevant intracellular forces from high-resolution cell stiffness images.


Assuntos
Células , Nanoestruturas , Fenômenos Biomecânicos , Humanos , Microscopia de Força Atômica
2.
Rev Sci Instrum ; 91(8): 083703, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872926

RESUMO

The tip-sample interaction force measurements in atomic force microscopy (AFM) provide information about materials' properties with nanoscale resolution. The T-shaped cantilevers used in Torsional-Harmonic AFM allow measuring the rapidly changing tip-sample interaction forces using the torsional (twisting) deflections of the cantilever due to the off-axis placement of the sharp tip. However, it has been difficult to calibrate these cantilevers using the commonly used thermal noise-based calibration method as the mechanical coupling between flexural and torsional deflections makes it challenging to determine the deflection sensitivities from force-distance curves. Here, we present thermal noise-based calibration of these T-shaped AFM cantilevers by simultaneously analyzing flexural and torsional thermal noise spectra, along with deflection signals during a force-distance curve measurement. The calibration steps remain identical to the conventional thermal noise method, but a computer performs additional calculations to account for mode coupling. We demonstrate the robustness of the calibration method by determining the sensitivity of calibration results to the laser spot position on the cantilever, to the orientation of the cantilever in the cantilever holder, and by repeated measurements. We validated the quantitative force measurements against the known unfolding force of a protein, the I91 domain of titin, which resulted in consistent unfolding force values among six independently calibrated cantilevers.

3.
Cell Rep ; 26(1): 266-278.e5, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605681

RESUMO

Intracellular recordings in vivo remains the best technique to link single-neuron electrical properties to network function. Yet existing methods are limited in accuracy, throughput, and duration, primarily via washout, membrane damage, and movement-induced failure. Here, we introduce flexible quartz nanopipettes (inner diameters of 10-25 nm and spring constant of ∼0.08 N/m) as nanoscale analogs of traditional glass microelectrodes. Nanopipettes enable stable intracellular recordings (seal resistances of 500 to ∼800 MΩ, 5 to ∼10 cells/nanopipette, and duration of ∼1 hr) in anaesthetized and awake head-restrained mice, exhibit minimal diffusional flux, and facilitate precise recording and stimulation. When combined with quantum-dot labels and microprisms, nanopipettes enable two-photon targeted electrophysiology from both somata and dendrites, and even paired recordings from neighboring neurons, while permitting simultaneous population imaging across cortical layers. We demonstrate the versatility of this method by recording from parvalbumin-positive (Pv) interneurons while imaging seizure propagation, and we find that Pv depolarization block coincides with epileptic spread. Flexible nanopipettes present a simple method to procure stable intracellular recordings in vivo.


Assuntos
Fenômenos Eletrofisiológicos/genética , Eletrofisiologia/métodos , Animais , Camundongos
4.
Nat Phys ; 15(7): 689-695, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33790983

RESUMO

Cells sense the rigidity of their environment through localized pinching, which occurs when myosin molecular motors generate contractions within actin filaments anchoring the cell to its surroundings. We present high-resolution experiments performed on these elementary contractile units in cells. Our experimental results challenge the current understanding of molecular motor force generation. Surprisingly, bipolar myosin filaments generate much larger forces per motor than measured in single molecule experiments. Further, contraction to a fixed distance, followed by relaxation at the same rate, is observed over a wide range of matrix rigidities. Lastly, step-wise displacements of the matrix contacts are apparent during both contraction and relaxation. Building upon a generic two-state model of molecular motor collections, we interpret these unexpected observations as spontaneously emerging features of a collective motor behavior. Our approach explains why, in the cellular context, collections of resilient and slow motors contract in a stepwise fashion while collections of weak and fast motors do not. We thus rationalize the specificity of motor contractions implied in rigidity sensing compared to previous in vitro observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA