Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 155(5): 997-1007, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267886

RESUMO

Autism spectrum disorder (ASD) is a complex developmental syndrome of unknown etiology. Recent studies employing exome- and genome-wide sequencing have identified nine high-confidence ASD (hcASD) genes. Working from the hypothesis that ASD-associated mutations in these biologically pleiotropic genes will disrupt intersecting developmental processes to contribute to a common phenotype, we have attempted to identify time periods, brain regions, and cell types in which these genes converge. We have constructed coexpression networks based on the hcASD "seed" genes, leveraging a rich expression data set encompassing multiple human brain regions across human development and into adulthood. By assessing enrichment of an independent set of probable ASD (pASD) genes, derived from the same sequencing studies, we demonstrate a key point of convergence in midfetal layer 5/6 cortical projection neurons. This approach informs when, where, and in what cell types mutations in these specific genes may be productively studied to clarify ASD pathophysiology.


Assuntos
Encéfalo/metabolismo , Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Transtornos Globais do Desenvolvimento Infantil/patologia , Exoma , Feminino , Feto/metabolismo , Feto/patologia , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Mutação , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Análise de Sequência de DNA
2.
Am J Hum Genet ; 105(6): 1286-1293, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31708116

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life, and in utero obstruction to urine flow is a frequent cause of secondary upper urinary tract malformations. Here, using whole-exome sequencing, we identified three different biallelic mutations in CHRNA3, which encodes the α3 subunit of the nicotinic acetylcholine receptor, in five affected individuals from three unrelated families with functional lower urinary tract obstruction and secondary CAKUT. Four individuals from two families have additional dysautonomic features, including impaired pupillary light reflexes. Functional studies in vitro demonstrated that the mutant nicotinic acetylcholine receptors were unable to generate current following stimulation with acetylcholine. Moreover, the truncating mutations p.Thr337Asnfs∗81 and p.Ser340∗ led to impaired plasma membrane localization of CHRNA3. Although the importance of acetylcholine signaling in normal bladder function has been recognized, we demonstrate for the first time that mutations in CHRNA3 can cause bladder dysfunction, urinary tract malformations, and dysautonomia. These data point to a pathophysiologic sequence by which monogenic mutations in genes that regulate bladder innervation may secondarily cause CAKUT.


Assuntos
Doenças do Sistema Nervoso Autônomo/etiologia , Rim/anormalidades , Mutação , Receptores Nicotínicos/genética , Sistema Urinário/anormalidades , Anormalidades Urogenitais/etiologia , Adulto , Doenças do Sistema Nervoso Autônomo/genética , Doenças do Sistema Nervoso Autônomo/patologia , Feminino , Seguimentos , Humanos , Rim/patologia , Masculino , Linhagem , Prognóstico , Sistema Urinário/patologia , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/patologia , Adulto Jovem
3.
Genet Med ; 24(2): 307-318, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906515

RESUMO

PURPOSE: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the leading cause of chronic kidney disease in children. In total, 174 monogenic causes of isolated or syndromic CAKUT are known. However, syndromic features may be overlooked when the initial clinical diagnosis of CAKUT is made. We hypothesized that the yield of a molecular genetic diagnosis by exome sequencing (ES) can be increased by applying reverse phenotyping, by re-examining the case for signs/symptoms of the suspected clinical syndrome that results from the genetic variant detected by ES. METHODS: We conducted ES in an international cohort of 731 unrelated families with CAKUT. We evaluated ES data for variants in 174 genes, in which variants are known to cause isolated or syndromic CAKUT. In cases in which ES suggested a previously unreported syndromic phenotype, we conducted reverse phenotyping. RESULTS: In 83 of 731 (11.4%) families, we detected a likely CAKUT-causing genetic variant consistent with an isolated or syndromic CAKUT phenotype. In 19 of these 83 families (22.9%), reverse phenotyping yielded syndromic clinical findings, thereby strengthening the genotype-phenotype correlation. CONCLUSION: We conclude that employing reverse phenotyping in the evaluation of syndromic CAKUT genes by ES provides an important tool to facilitate molecular genetic diagnostics in CAKUT.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Alelos , Exoma/genética , Humanos , Rim/anormalidades , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral
4.
Am J Med Genet A ; 188(5): 1355-1367, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040250

RESUMO

Spina bifida (SB) is the second most common nonlethal congenital malformation. The existence of monogenic SB mouse models and human monogenic syndromes with SB features indicate that human SB may be caused by monogenic genes. We hypothesized that whole exome sequencing (WES) allows identification of potential candidate genes by (i) generating a list of 136 candidate genes for SB, and (ii) by unbiased exome-wide analysis. We generated a list of 136 potential candidate genes from three categories and evaluated WES data of 50 unrelated SB cases for likely deleterious variants in 136 potential candidate genes, and for potential SB candidate genes exome-wide. We identified 6 likely deleterious variants in 6 of the 136 potential SB candidate genes in 6 of the 50 SB cases, whereof 4 genes were derived from mouse models, 1 gene was derived from human nonsyndromic SB, and 1 gene was derived from candidate genes known to cause human syndromic SB. In addition, by unbiased exome-wide analysis, we identified 12 genes as potential candidates for SB. Identification of these 18 potential candidate genes in larger SB cohorts will help decide which ones can be considered as novel monogenic causes of human SB.


Assuntos
Exoma , Disrafismo Espinal , Animais , Modelos Animais de Doenças , Exoma/genética , Humanos , Camundongos , Disrafismo Espinal/genética , Sequenciamento do Exoma
5.
J Am Soc Nephrol ; 32(3): 580-596, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33593823

RESUMO

BACKGROUND: Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. METHODS: Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified. RESULTS: Three biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes. CONCLUSIONS: Variants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.


Assuntos
Proteínas de Ligação a DNA/genética , Hérnia Hiatal/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Nefrose/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Pré-Escolar , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Moleculares , Síndrome Nefrótica/genética , Podócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Pronefro/embriologia , Pronefro/metabolismo , Estabilidade Proteica , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Xenopus laevis/embriologia , Xenopus laevis/genética , Dedos de Zinco/genética
6.
Nature ; 515(7526): 216-21, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25363768

RESUMO

Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease. Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By comparing affected to unaffected siblings, we show that 13% of de novo missense mutations and 43% of de novo likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding de novo mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Most of the significance for the latter comes from affected females.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Predisposição Genética para Doença/genética , Mutação/genética , Fases de Leitura Aberta/genética , Criança , Análise por Conglomerados , Exoma/genética , Feminino , Genes , Humanos , Testes de Inteligência , Masculino , Reprodutibilidade dos Testes
7.
J Am Soc Nephrol ; 30(2): 201-215, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30655312

RESUMO

BACKGROUND: Whole-exome sequencing (WES) finds a CKD-related mutation in approximately 20% of patients presenting with CKD before 25 years of age. Although provision of a molecular diagnosis could have important implications for clinical management, evidence is lacking on the diagnostic yield and clinical utility of WES for pediatric renal transplant recipients. METHODS: To determine the diagnostic yield of WES in pediatric kidney transplant recipients, we recruited 104 patients who had received a transplant at Boston Children's Hospital from 2007 through 2017, performed WES, and analyzed results for likely deleterious variants in approximately 400 genes known to cause CKD. RESULTS: By WES, we identified a genetic cause of CKD in 34 out of 104 (32.7%) transplant recipients. The likelihood of detecting a molecular genetic diagnosis was highest for patients with urinary stone disease (three out of three individuals), followed by renal cystic ciliopathies (seven out of nine individuals), steroid-resistant nephrotic syndrome (nine out of 21 individuals), congenital anomalies of the kidney and urinary tract (ten out of 55 individuals), and chronic glomerulonephritis (one out of seven individuals). WES also yielded a molecular diagnosis for four out of nine individuals with ESRD of unknown etiology. The WES-related molecular genetic diagnosis had implications for clinical care for five patients. CONCLUSIONS: Nearly one third of pediatric renal transplant recipients had a genetic cause of their kidney disease identified by WES. Knowledge of this genetic information can help guide management of both transplant patients and potential living related donors.


Assuntos
Sequenciamento do Exoma/métodos , Transplante de Rim/métodos , Medicina de Precisão/métodos , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/cirurgia , Adolescente , Boston , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Predisposição Genética para Doença/epidemiologia , Testes Genéticos/métodos , Rejeição de Enxerto , Sobrevivência de Enxerto , Hospitais Pediátricos , Humanos , Transplante de Rim/efeitos adversos , Masculino , Prognóstico , Insuficiência Renal Crônica/fisiopatologia , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Análise de Sobrevida , Transplantados/estatística & dados numéricos , Resultado do Tratamento
8.
Kidney Int ; 95(4): 914-928, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30773290

RESUMO

Approximately 500 monogenic causes of chronic kidney disease (CKD) have been identified, mainly in pediatric populations. The frequency of monogenic causes among adults with CKD has been less extensively studied. To determine the likelihood of detecting monogenic causes of CKD in adults presenting to nephrology services in Ireland, we conducted whole exome sequencing (WES) in a multi-centre cohort of 114 families including 138 affected individuals with CKD. Affected adults were recruited from 78 families with a positive family history, 16 families with extra-renal features, and 20 families with neither a family history nor extra-renal features. We detected a pathogenic mutation in a known CKD gene in 42 of 114 families (37%). A monogenic cause was identified in 36% of affected families with a positive family history of CKD, 69% of those with extra-renal features, and only 15% of those without a family history or extra-renal features. There was no difference in the rate of genetic diagnosis in individuals with childhood versus adult onset CKD. Among the 42 families in whom a monogenic cause was identified, WES confirmed the clinical diagnosis in 17 (40%), corrected the clinical diagnosis in 9 (22%), and established a diagnosis for the first time in 16 families referred with CKD of unknown etiology (38%). In this multi-centre study of adults with CKD, a molecular genetic diagnosis was established in over one-third of families. In the evolving era of precision medicine, WES may be an important tool to identify the cause of CKD in adults.


Assuntos
Sequenciamento do Exoma , Predisposição Genética para Doença , Testes Genéticos/métodos , Insuficiência Renal Crônica/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Exoma/genética , Feminino , Humanos , Irlanda , Rim , Masculino , Anamnese , Pessoa de Meia-Idade , Mutação , Linhagem , Medicina de Precisão , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia , Adulto Jovem
9.
Am J Med Genet A ; 179(10): 2112-2118, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31444901

RESUMO

Generalized arterial calcifications of infancy (GACI) is caused by mutations in ENPP1. Other ENPP1-related phenotypes include pseudoxanthoma elasticum, hypophosphatemic rickets, and Cole disease. We studied four children from two Bedouin consanguineous families who presented with severe clinical phenotype including thrombocytopenia, hypoglycemia, hepatic, and neurologic manifestations. Initial working diagnosis included congenital infection; however, patients remained without a definitive diagnosis despite extensive workup. Consequently, we investigated a potential genetic etiology. Whole exome sequencing (WES) was performed for affected children and their parents. Following the identification of a novel mutation in the ENPP1 gene, we characterized this novel multisystemic presentation and revised relevant imaging studies. Using WES, we identified a novel homozygous mutation (c.556G > C; p.Gly186Arg) in ENPP1 which affects a highly conserved protein domain (somatomedin B2). ENPP1-associated genetic diseases exhibit phenotypic heterogeneity depending on mutation type and location. Follow-up clinical characterization of these families allowed us to revise and detect new features of systemic calcifications, which established the diagnosis of GACI, expanding the phenotypic spectrum associated with ENPP1 mutations. Our findings demonstrate that this novel ENPP1 founder mutation can cause a fatal multisystemic phenotype, mimicking severe congenital infection. This also represents the first reported mutation affecting the SMB2 domain, associated with GACI.


Assuntos
Anormalidades Cardiovasculares/genética , Sistema Nervoso Central/anormalidades , Mutação/genética , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Trombocitopenia/genética , Calcificação Vascular/genética , Sequência de Bases , Anormalidades Cardiovasculares/complicações , Anormalidades Cardiovasculares/diagnóstico por imagem , Sistema Nervoso Central/diagnóstico por imagem , Evolução Fatal , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo , Gravidez , Síndrome , Trombocitopenia/complicações , Calcificação Vascular/complicações , Calcificação Vascular/diagnóstico por imagem
10.
Pediatr Nephrol ; 34(9): 1607-1613, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31001663

RESUMO

BACKGROUND: Heterozygous PAX2 mutations cause renal coloboma syndrome (RCS) [OMIM no. 120330]. RCS is a renal syndromic disease encompassing retinal coloboma and sensorineural hearing loss. Recently, a causative role for PAX2 was reported in adult-onset nephrotic syndrome secondary to focal segmental glomerulosclerosis (FSGS). However, the prevalence of PAX2 mutations among large cohort of children with steroid-resistant nephrotic syndrome (SRNS) and FSGS has not been systematically studied. METHODS: We employed whole-exome sequencing (WES) to identify the percentage of SRNS cases explained by monogenic mutations in known genes of SRNS/FSGS. As PAX2 mutations are not an established cause of childhood FSGS, we evaluated a cohort of 215 unrelated families with SRNS, in whom no underlying genetic etiology had been previously established. RESULTS: Using WES, we identified 3 novel causative heterozygous PAX2 mutations in 3 out of the 215 unrelated index cases studied (1.3%). All three cases were detected in individuals from families with more than one affected and compatible with an autosomal dominant mode of inheritance (3/57 familial cases studied (5.2%)). The clinical diagnosis in three out of four pediatric index patients was done during routine medical evaluation. CONCLUSIONS: Our findings demonstrate high frequency of PAX2 mutations in familial form of SRNS (5.2%) and further expand the phenotypic spectrum of PAX2 heterozygous mutations to include autosomal dominant childhood-onset FSGS. These results highlight the importance of including PAX2 in the list of genes known to cause FSGS in children.


Assuntos
Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/genética , Glucocorticoides/farmacologia , Síndrome Nefrótica/genética , Fator de Transcrição PAX2/genética , Adolescente , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Resistência a Medicamentos/genética , Feminino , Testes Genéticos , Glucocorticoides/uso terapêutico , Heterozigoto , Humanos , Lactente , Masculino , Mutação , Síndrome Nefrótica/tratamento farmacológico , Linhagem , Sequenciamento do Exoma , Adulto Jovem
11.
Nature ; 498(7453): 220-3, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23665959

RESUMO

Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. Here we compare the incidence of de novo mutations in 362 severe CHD cases and 264 controls by analysing exome sequencing of parent-offspring trios. CHD cases show a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging (premature termination, frameshift, splice site) mutations. Similar odds ratios are seen across the main classes of severe CHD. We find a marked excess of de novo mutations in genes involved in the production, removal or reading of histone 3 lysine 4 (H3K4) methylation, or ubiquitination of H2BK120, which is required for H3K4 methylation. There are also two de novo mutations in SMAD2, which regulates H3K27 methylation in the embryonic left-right organizer. The combination of both activating (H3K4 methylation) and inactivating (H3K27 methylation) chromatin marks characterizes 'poised' promoters and enhancers, which regulate expression of key developmental genes. These findings implicate de novo point mutations in several hundreds of genes that collectively contribute to approximately 10% of severe CHD.


Assuntos
Cardiopatias/congênito , Cardiopatias/genética , Histonas/metabolismo , Adulto , Estudos de Casos e Controles , Criança , Cromatina/química , Cromatina/metabolismo , Análise Mutacional de DNA , Elementos Facilitadores Genéticos/genética , Exoma/genética , Feminino , Genes Controladores do Desenvolvimento/genética , Cardiopatias/metabolismo , Histonas/química , Humanos , Lisina/química , Lisina/metabolismo , Masculino , Metilação , Mutação , Razão de Chances , Regiões Promotoras Genéticas/genética
12.
Genes Chromosomes Cancer ; 57(12): 645-652, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30136351

RESUMO

Foci of papillary or follicular thyroid carcinoma are frequently noted in thyroidectomy specimens of anaplastic thyroid carcinoma (ATC). However, whether ATCs evolve from these co-existing well-differentiated thyroid carcinomas (WDTCs) has not been well-understood. To investigate the progression of ATC in patients with co-existing WDTCs, five ATC tumors with co-existing WDTCs and matching normal tissues were whole-exome sequenced. After mapping the somatic alteration landscape, evolutionary lineages were constructed by sub-clone analysis. Though each tumor harbored at least some unique private mutations, all five ATCs demonstrated numerous overlapping mutations with matched WDTCs. Clonal analysis further demonstrated that each ATC/WDTC pair shared a common ancestor, with some pairs diverging early in their evolution and others in which the ATC seems to arise directly from a sub-clone of the WDTC. Though the precise lineal relationship remains ambiguous, based on the genetic relationship, our study clearly suggests a shared origin of ATC and WDTC.


Assuntos
Evolução Clonal , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinogênese , Diferenciação Celular , Estudos de Coortes , Análise Mutacional de DNA , DNA de Neoplasias , Exoma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia
13.
Nature ; 485(7397): 237-41, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22495306

RESUMO

Multiple studies have confirmed the contribution of rare de novo copy number variations to the risk for autism spectrum disorders. But whereas de novo single nucleotide variants have been identified in affected individuals, their contribution to risk has yet to be clarified. Specifically, the frequency and distribution of these mutations have not been well characterized in matched unaffected controls, and such data are vital to the interpretation of de novo coding mutations observed in probands. Here we show, using whole-exome sequencing of 928 individuals, including 200 phenotypically discordant sibling pairs, that highly disruptive (nonsense and splice-site) de novo mutations in brain-expressed genes are associated with autism spectrum disorders and carry large effects. On the basis of mutation rates in unaffected individuals, we demonstrate that multiple independent de novo single nucleotide variants in the same gene among unrelated probands reliably identifies risk alleles, providing a clear path forward for gene discovery. Among a total of 279 identified de novo coding mutations, there is a single instance in probands, and none in siblings, in which two independent nonsense variants disrupt the same gene, SCN2A (sodium channel, voltage-gated, type II, α subunit), a result that is highly unlikely by chance.


Assuntos
Transtorno Autístico/genética , Exoma/genética , Éxons/genética , Predisposição Genética para Doença/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Alelos , Códon sem Sentido/genética , Heterogeneidade Genética , Humanos , Canal de Sódio Disparado por Voltagem NAV1.2 , Sítios de Splice de RNA/genética , Irmãos
14.
Nature ; 482(7383): 98-102, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22266938

RESUMO

Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. Pseudohypoaldosteronism type II (PHAII), a rare Mendelian syndrome featuring hypertension, hyperkalaemia and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption and K(+) and H(+) excretion. Here we used exome sequencing to identify mutations in kelch-like 3 (KLHL3) or cullin 3 (CUL3) in PHAII patients from 41 unrelated families. KLHL3 mutations are either recessive or dominant, whereas CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-domain-containing kelch proteins such as KLHL3 are components of cullin-RING E3 ligase complexes that ubiquitinate substrates bound to kelch propeller domains. Dominant KLHL3 mutations are clustered in short segments within the kelch propeller and BTB domains implicated in substrate and cullin binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na-Cl cotransporter in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3 and CUL3 mutations, increased Na-Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite the combined complexities of locus heterogeneity, mixed models of transmission and frequent de novo mutation, and establish a fundamental role for KLHL3 and CUL3 in blood pressure, K(+) and pH homeostasis.


Assuntos
Proteínas de Transporte/genética , Proteínas Culina/genética , Hipertensão/genética , Mutação/genética , Pseudo-Hipoaldosteronismo/genética , Desequilíbrio Hidroeletrolítico/genética , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Sequência de Bases , Pressão Sanguínea/genética , Proteínas de Transporte/química , Estudos de Coortes , Proteínas Culina/química , Eletrólitos , Éxons/genética , Feminino , Perfilação da Expressão Gênica , Genes Dominantes/genética , Genes Recessivos/genética , Genótipo , Homeostase/genética , Humanos , Concentração de Íons de Hidrogênio , Hipertensão/complicações , Hipertensão/fisiopatologia , Masculino , Camundongos , Proteínas dos Microfilamentos , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Potássio/metabolismo , Pseudo-Hipoaldosteronismo/complicações , Pseudo-Hipoaldosteronismo/fisiopatologia , Cloreto de Sódio/metabolismo , Desequilíbrio Hidroeletrolítico/complicações , Desequilíbrio Hidroeletrolítico/fisiopatologia
15.
Hum Mol Genet ; 23(2): 397-407, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24006476

RESUMO

Pathologically elevated serum levels of fibroblast growth factor-23 (FGF23), a bone-derived hormone that regulates phosphorus homeostasis, result in renal phosphate wasting and lead to rickets or osteomalacia. Rarely, elevated serum FGF23 levels are found in association with mosaic cutaneous disorders that affect large proportions of the skin and appear in patterns corresponding to the migration of ectodermal progenitors. The cause and source of elevated serum FGF23 is unknown. In those conditions, such as epidermal and large congenital melanocytic nevi, skin lesions are variably associated with other abnormalities in the eye, brain and vasculature. The wide distribution of involved tissues and the appearance of multiple segmental skin and bone lesions suggest that these conditions result from early embryonic somatic mutations. We report five such cases with elevated serum FGF23 and bone lesions, four with large epidermal nevi and one with a giant congenital melanocytic nevus. Exome sequencing of blood and affected skin tissue identified somatic activating mutations of HRAS or NRAS in each case without recurrent secondary mutation, and we further found that the same mutation is present in dysplastic bone. Our finding of somatic activating RAS mutation in bone, the endogenous source of FGF23, provides the first evidence that elevated serum FGF23 levels, hypophosphatemia and osteomalacia are associated with pathologic Ras activation and may provide insight in the heretofore limited understanding of the regulation of FGF23.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , GTP Fosfo-Hidrolases/genética , Hipofosfatemia/genética , Proteínas de Membrana/genética , Nevo Pigmentado/genética , Osteomalacia/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Cutâneas/genética , Adolescente , Criança , Exoma , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hipofosfatemia/sangue , Hipofosfatemia/patologia , Masculino , Mutação , Nevo , Nevo Pigmentado/sangue , Nevo Pigmentado/patologia , Osteomalacia/sangue , Osteomalacia/patologia , Análise de Sequência de DNA , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/patologia
16.
J Hum Genet ; 61(5): 395-403, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26740239

RESUMO

The fat mass and obesity associated (FTO) gene has previously been associated with a variety of diseases and conditions, notably obesity, acute coronary syndrome and metabolic syndrome. Reports describing mutations in FTO as well as in FTO animal models have further demonstrated a role for FTO in the development of the brain and other organs. Here, we describe a patient born of consanguineous union who presented with microcephaly, developmental delay, behavioral abnormalities, dysmorphic facial features, hypotonia and other various phenotypic abnormalities. Whole-exome sequencing revealed a novel homozygous missense mutation in FTO and a nonsense mutation in the cholesteryl ester transfer protein (CETP). Exome copy number variation analysis revealed no disease-causing large duplications or deletions within coding regions. Patient's, her parents' and non-related control' fibroblasts were analyzed for morphologic defects, abnormal proliferation, apoptosis and transcriptome profile. We have shown that FTO is located in the nucleus of cells from each tested sample. Western blot analysis demonstrated no changes in patient FTO. Quantitative (qPCR) analysis revealed slightly decreased levels of FTO expression in patient cells compared with controls. No morphological or proliferation differences between the patient and control fibroblasts were observed. There is still much to be learned about the molecular mechanisms by which mutations in FTO contribute to such severe phenotypes.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Proteínas de Transferência de Ésteres de Colesterol/genética , Estudos de Associação Genética , Homozigoto , Mutação de Sentido Incorreto , Apoptose/genética , Biópsia , Pré-Escolar , Biologia Computacional/métodos , Consanguinidade , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Exoma , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Transcriptoma
17.
Biomedicines ; 10(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35625741

RESUMO

Breast cancer is the most prevalent malignancy among women worldwide and hereditary breast cancer (HBC) accounts for about 5−10% of the cases. Today, the most recurrent genes known are BRCA1 and BRCA2, accounting for around 25% of familial cases. Although thousands of loss-of-function variants in more than twenty predisposing genes have been found, the majority of familial cases of HBC remain unexplained. The aim of this study was to identify new predisposing genes for HBC in three non-BRCA families with autosomal dominant inheritance pattern using whole-exome sequencing and functional prediction tools. No pathogenic variants in known hereditary cancer-related genes could explain the breast cancer susceptibility in these families. Among 2122 exonic variants with maximum minor allele frequency (MMAF) < 0.1%, between 17−35 variants with combined annotation-dependent depletion (CADD) > 20 segregated with disease in the three analyzed families. Selected candidate genes, i.e., UBASH3A, MYH13, UTP11L, and PAX7, were further evaluated using protein expression analysis but no alterations of cancer-related pathways were observed. In conclusion, identification of new high-risk cancer genes using whole-exome sequencing has been more challenging than initially anticipated, in spite of selected families with pronounced family history of breast cancer. A combination of low- and intermediate-genetic-risk variants may instead contribute the breast cancer susceptibility in these families.

18.
Eur Urol Open Sci ; 44: 106-112, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36185583

RESUMO

Background: Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease among children and adults younger than 30 yr. In our previous study, whole-exome sequencing (WES) identified a known monogenic cause of isolated or syndromic CAKUT in 13% of families with CAKUT. However, WES has limitations and detection of copy number variations (CNV) is technically challenging, and CNVs causative of CAKUT have previously been detected in up to 16% of cases. Objective: To detect CNVs causing CAKUT in this WES cohort and increase the diagnostic yield. Design setting and participants: We performed a genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on the same CAKUT cohort for whom WES was previously conducted. Outcome measurements and statistical analysis: We evaluated and classified the CNVs using previously published predefined criteria. Results and limitations: In a cohort of 170 CAKUT families, we detected a pathogenic CNV known to cause CAKUT in nine families (5.29%, 9/170). There were no competing variants on genome-wide CNV analysis or WES analysis. In addition, we identified novel likely pathogenic CNVs that may cause a CAKUT phenotype in three of the 170 families (1.76%). Conclusions: CNV analysis in this cohort of 170 CAKUT families previously examined via WES increased the rate of diagnosis of genetic causes of CAKUT from 13% on WES to 18% on WES + CNV analysis combined. We also identified three candidate loci that may potentially cause CAKUT. Patient summary: We conducted a genetics study on families with congenital anomalies of the kidney and urinary tract (CAKUT). We identified gene mutations that can explain CAKUT symptoms in 5.29% of the families, which increased the percentage of genetic causes of CAKUT to 18% from a previous study, so roughly one in five of our patients with CAKUT had a genetic cause. These analyses can help patients with CAKUT and their families in identifying a possible genetic cause.

19.
Blood ; 113(12): 2826-34, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19136660

RESUMO

Megakaryoblastic leukemia 1 (MKL1), identified as part of the t(1;22) translocation specific to acute megakaryoblastic leukemia, is highly expressed in differentiated muscle cells and promotes muscle differentiation by activating serum response factor (SRF). Here we show that Mkl1 expression is up-regulated during murine megakaryocytic differentiation and that enforced overexpression of MKL1 enhances megakaryocytic differentiation. When the human erythroleukemia (HEL) cell line is induced to differentiate with 12-O-tetradecanoylphorbol 13-acetate, overexpression of MKL1 results in an increased number of megakaryocytes with a concurrent increase in ploidy. MKL1 overexpression also promotes megakaryocytic differentiation of primary human CD34(+) cells cultured in the presence of thrombopoietin. The effect of MKL1 is abrogated when SRF is knocked down, suggesting that MKL1 acts through SRF. Consistent with these findings in human cells, knockout of Mkl1 in mice leads to reduced platelet counts in peripheral blood, and reduced ploidy in bone marrow megakaryocytes. In conclusion, MKL1 promotes physiologic maturation of human and murine megakaryocytes.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Megacariócitos/citologia , Proteínas de Fusão Oncogênica/fisiologia , Trombopoese/fisiologia , Transativadores/fisiologia , Animais , Contagem de Células Sanguíneas , Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Eritroblástica Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Fusão Oncogênica/biossíntese , Proteínas de Fusão Oncogênica/genética , Ploidias , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/fisiologia , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/fisiologia , Trombocitopenia/genética , Trombocitopenia/patologia , Trombopoetina/sangue , Trombopoetina/farmacologia , Transativadores/biossíntese , Transativadores/deficiência , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA