Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(24)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38913841

RESUMO

In non-perturbative non-Markovian open quantum systems, reaching either low temperatures with the hierarchical equations of motion (HEOM) or high temperatures with the Thermalized Time Evolving Density Operator with Orthogonal Polynomials Algorithm (T-TEDOPA) formalism in Hilbert space remains challenging. We compare different ways of modeling the environment. Sampling the Fourier transform of the bath correlation function, also called temperature dependent spectral density, proves to be very effective. T-TEDOPA [Tamascelli et al., Phys. Rev. Lett. 123, 090402 (2019)] uses a linear chain of oscillators with positive and negative frequencies, while HEOM is based on the complex poles of an optimized rational decomposition of the temperature dependent spectral density [Xu et al., Phys. Rev. Lett. 129, 230601 (2022)]. Resorting to the poles of the temperature independent spectral density and of the Bose function separately is an alternative when the problem due to the huge number of Bose poles at low temperatures is circumvented. Two examples illustrate the effectiveness of the HEOM and T-TEDOPA approaches: a benchmark pure dephasing case and a two-bath model simulating the dynamics of excited electronic states coupled through a conical intersection. We show the efficiency of T-TEDOPA to simulate dynamics at a finite temperature by using either continuous spectral densities or only all the intramolecular oscillators of a linear vibronic model calibrated from ab initio data of a phenylene ethynylene dimer.

2.
Phys Rev Lett ; 131(12): 126101, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802932

RESUMO

Anhydrous sodium hydroxide, a common and structurally simple compound, shows spectacular isotope effects: NaOD undergoes a first-order transition, which is absent in NaOH. By combining ab initio electronic structure calculations with Feynman path integrals, we show that NaOH is an unusual example of a quantum paraelectric: zero-point quantum fluctuations stretch the weak hydrogen bonds (HBs) into a region where they are unstable and break. By strengthening the HBs via isotope substitution or applied pressure, the system can be driven to a broken-symmetry antiferroelectric phase. In passing, we provide a simple quantitative criterion for HB breaking in layered crystals and show that nuclear quantum effects are crucial in paraelectric to ferroelectric transitions in hydrogen-bonded hydroxides.

3.
J Chem Phys ; 156(4): 044703, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35105055

RESUMO

The possibility of controlling electrokinetic transport through carbon and hexagonal boron nitride (hBN) nanotubes has recently opened new avenues for nanofluidic approaches to face outstanding challenges such as energy production and conversion or water desalination. The pH-dependence of experimental transport coefficients points to the sorption of hydroxide ions as the microscopic origin of the surface charge and recent ab initio calculations suggest that these ions behave differently on carbon and hBN, with only physisorption on the former and both physisorption and chemisorption on the latter. Using classical non-equilibrium molecular dynamics simulations of interfaces between an aqueous electrolyte and three models of hBN and graphite surfaces, we demonstrate the major influence of the sorption mode of hydroxide ions on the interfacial transport properties. Physisorbed surface charge leads to a considerable enhancement of the surface conductivity as compared to its chemisorbed counterpart, while values of the ζ-potential are less affected. The analysis of the MD results for the surface conductivity and ζ-potential in the framework of Poisson-Boltzmann-Stokes theory, as is usually done to analyze experimental data, further confirms the importance of taking into account both the mobility of surface hydroxide ions and the decrease in the slip length with increasing titratable surface charge density.

4.
J Chem Phys ; 155(3): 034303, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293889

RESUMO

Funneling dynamics in conjugated dendrimers has raised great interest in the context of artificial light-harvesting processes. Photoinduced relaxation has been explored by time-resolved spectroscopy and simulations, mainly by semiclassical approaches or referring to open quantum systems methods, within the Redfield approximation. Here, we take the benefit of an ab initio investigation of a phenylacetylene trimer, and in the spirit of a divide-and-conquer approach, we focus on the early dynamics of the hierarchy of interactions. We build a simplified but realistic model by retaining only bright electronic states and selecting the vibrational domain expected to play the dominant role for timescales shorter than 500 fs. We specifically analyze the role of the in-plane high-frequency skeletal vibrational modes involving the triple bonds. Open quantum system non-adiabatic dynamics involving conical intersections is conducted by separating the electronic subsystem from the high-frequency tuning and coupling vibrational baths. This partition is implemented within a robust non-perturbative and non-Markovian method, here the hierarchical equations of motion. We will more precisely analyze the coherent preparation of donor states or of their superposition by short laser pulses with different polarizations. In particular, we extend the π-pulse strategy for the creation of a superposition to a V-type system. We study the relaxation induced by the high-frequency vibrational collective modes and the transitory dissymmetry, which results from the creation of a superposition of electronic donor states.

5.
J Chem Phys ; 153(4): 044125, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752721

RESUMO

We show how to evaluate mobility profiles, characterizing the transport of confined fluids under a perturbation, from equilibrium molecular dynamics simulations. The correlation functions derived with the Green-Kubo formalism are difficult to sample accurately, and we consider two complementary strategies: improving the spatial sampling, thanks to a new estimator of the local fluxes involving the forces acting on the particles in addition to their positions and velocities, and improving the temporal sampling, thanks to the Einstein-Helfand approach instead of the Green-Kubo one. We illustrate this method in the case of a binary mixture confined between parallel walls, under a pressure or chemical potential gradient. All equilibrium methods are compared to standard non-equilibrium molecular dynamics (NEMD) and provide the correct mobility profiles. We recover quantitatively fluid viscosity and diffusio-osmotic mobility in the bulk part of the pore. Interestingly, the matrix of mobility profiles for local fluxes is not symmetric, unlike the Onsager matrix for the total fluxes. Even the most computationally efficient equilibrium method (the Einstein-Helfand approach combined with the force-based estimator) remains less efficient than NEMD to determine a specific mobility profile. However, the equilibrium approach provides all responses to all perturbations simultaneously, whereas NEMD requires the simulation of several types of perturbations to determine the various responses, each with different magnitudes to check the validity of the linear regime. While NEMD seems more competitive for the present example, the balance should be different for more complex systems, in particular for electrolyte solutions for the responses to pressure, salt concentration, and electric potential gradients.

6.
J Chem Phys ; 151(24): 244102, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893912

RESUMO

We investigate the possibility of extracting the probability distribution of the effective environmental tuning and coupling modes during the nonadiabatic relaxation through a conical intersection. Dynamics are dealt with an open quantum system master equation by partitioning a multistate electronic subsystem out of all the nuclear vibrators. This is an alternative to the more usual partition retaining the tuning and coupling modes of a conical intersection in the active subsystem coupled to a residual bath. The minimal partition of the electronic system generally leads to highly structured spectral densities for both vibrational baths and requires a strongly nonperturbative non-Markovian master equation, treated here by the hierarchical equations of motion (HEOMs). We extend-for a two-bath situation-the procedure proposed by Shi et al. [J. Chem. Phys. 140, 134106 (2014)], whereby the information contained in the auxiliary HEOM matrices is exploited in order to derive the nuclear dissipative wave packet, i.e., the statistical distribution of the displacement of the two tuning and coupling collective coordinates in each electronic state and the coherence. This allows us to visualize the distribution, all along the nonadiabatic decay. We explore a large parameter space for a symmetrical conical intersection model and a symmetrical initial Franck-Condon preparation. Some parameters could be controlled by external fields, while others are molecule dependent and could be designed by molecular engineering. We illustrate the relation between the strongly coupled electronic and bath dynamics together with a geometric measure of non-Markovianity.

7.
Phys Chem Chem Phys ; 18(31): 21442-57, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27427185

RESUMO

Cryptochromes and photolyases are flavoproteins that may undergo ultrafast charge separation upon electronic excitation of their flavin cofactors. Charge separation involves chains of three or four tryptophan residues depending on the protein of interest. The molecular mechanisms of these processes are not completely clear. In the present work we investigate the relevance of quantum effects like the occurrence of nuclear tunneling and of coherences upon charge transfer in Arabidopsis thaliana cryptochromes. The possible breakdown of the Condon approximation is also investigated. We have devised a simulation protocol based on the realization of molecular dynamics simulations on diabatic potential energy surfaces defined at the hybrid constrained density functional theory/molecular mechanics level. The outcomes of the simulations are analyzed through various dedicated kinetics schemes related to the Marcus theory that account for the aforementioned quantum effects. MD simulations also provide a basic material to define realistic model Hamiltonians for subsequent quantum dissipative dynamics. To carry out quantum simulations, we have implemented an algorithm based on the Hierarchical Equations of Motion. With this new tool in hand we have been able to model the electron transfer chain considering either two- or three-state models. Kinetic models and quantum simulations converge to the conclusion that quantum effects have a significant impact on the rate of charge separation. Nuclear tunneling involving atoms of the tryptophan redox cofactors as well as of the environment (protein atoms and water molecules) is significant. On the other hand non-Condon effects are negligible in most simulations. Taken together, the results of the present work provide new insights into the molecular mechanisms controlling charge separation in this family of flavoproteins.

8.
J Chem Phys ; 140(4): 044104, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25669502

RESUMO

Following the recent quantum dynamics investigation of the charge transfer at an oligothiophene-fullerene heterojunction by the multi-configuration time dependent Hartree method [H. Tamura, R. Martinazzo, M. Ruckenbauer and I. Burghardt, J. Chem. Phys. 137, 22A540 (2012)], we revisit the transfer process by a perturbative non-Markovian master equation treated by the time local auxiliary density matrix approach. We compare the efficiency of the spin-boson model calibrated by quantum chemistry with the effective mode representation. A collective mode is extracted from the spin-boson spectral density. It is weakly coupled to a residual bath of vibrational modes, allowing second-order dynamics. The electron transfer is analyzed for a sampling of inter-fragment distances showing the fine interplay of the electronic coupling and energy gap on the relaxation. The electronic coherence, expected to play a role in the process, is preserved during about 200 fs.

9.
J Phys Chem Lett ; 12(34): 8285-8291, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34427440

RESUMO

We demonstrate the accuracy and efficiency of a recently introduced approach to account for nuclear quantum effects (NQEs) in molecular simulations: the adaptive quantum thermal bath (adQTB). In this method, zero-point energy is introduced through a generalized Langevin thermostat designed to precisely enforce the quantum fluctuation-dissipation theorem. We propose a refined adQTB algorithm with improved accuracy and report adQTB simulations of liquid water. Through extensive comparison with reference path integral calculations, we demonstrate that it provides excellent accuracy for a broad range of structural and thermodynamic observables as well as infrared vibrational spectra. The adQTB has a computational cost comparable to that of classical molecular dynamics, enabling simulations of up to millions of degrees of freedom.

10.
J Chem Theory Comput ; 15(5): 2863-2880, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30939002

RESUMO

Quantum thermal bath (QTB) simulations reproduce statistical nuclear quantum effects via a Langevin equation with a colored random force. Although this approach has proven efficient for a variety of chemical and condensed-matter problems, the QTB, as many other semiclassical methods, suffers from zero-point energy leakage (ZPEL). The absence of a reliable criterion to quantify the ZPEL without resorting to demanding comparisons with path integral-based calculations has so far hindered the use of the QTB for the simulation of real systems. In this work, we establish a quantitative connection between ZPEL in the QTB framework and deviations from the quantum fluctuation-dissipation theorem (FDT) that can be monitored along the simulation. This provides a rigorous general criterion to detect and quantify the ZPEL without any a priori knowledge of the system under study. We then use this criterion to build an adaptive QTB method that strictly enforces the quantum FDT at all frequencies via an on-the-fly, spectrally resolved fine-tuning of the system-bath coupling coefficients. The validity of the adaptive approach is first demonstrated on a simple two-oscillator model. It is then applied to two more realistic problems: the description of the vibrational properties of a model aluminum crystal at low temperature and the simulation of the liquid-solid phase transition in a 13-atom neon cluster. In both systems, the standard QTB results are strongly altered by the ZPEL, which can be essentially eliminated using the adaptive approach.

11.
J Phys Chem B ; 122(1): 126-136, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29216421

RESUMO

A multidimensional quantum mechanical protocol is used to describe the photoinduced electron transfer and electronic coherence in plant cryptochromes without any semiempirical, e.g., experimentally obtained, parameters. Starting from a two-level spin-boson Hamiltonian we look at the effect that the initial photoinduced nuclear bath distribution has on an intermediate step of this biological electron transfer cascade for two idealized cases. The first assumes a slow equilibration of the nuclear bath with respect to the previous electron transfer step that leads to an ultrafast decay with little temperature dependence; while the second assumes a prior fast bath equilibration on the donor potential energy surface leading to a much slower decay, which contrarily displays a high temperature dependence and a better agreement with previous theoretical and experimental results. Beyond Marcus and semiclassical pictures these results unravel the strong impact that the presence or not of equilibrium initial conditions has on the electronic population and coherence dynamics at the quantum dynamics level in this and conceivably in other biological electron transfer cascades.


Assuntos
Proteínas de Arabidopsis/química , Criptocromos/química , Elétrons , Modelos Químicos , Teoria Quântica , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA