Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 581(7806): 58-62, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32376963

RESUMO

When miniaturizing fluidic circuitry, the solid walls of the fluid channels become increasingly important1 because they limit the flow rates achievable for a given pressure drop, and they are prone to fouling2. Approaches for reducing the wall interactions include hydrophobic coatings3, liquid-infused porous surfaces4-6, nanoparticle surfactant jamming7, changes to surface electronic structure8, electrowetting9,10, surface tension pinning11,12 and use of atomically flat channels13. A better solution may be to avoid the solid walls altogether. Droplet microfluidics and sheath flow achieve this but require continuous flow of the central liquid and the surrounding liquid1,14. Here we demonstrate an approach in which aqueous liquid channels are surrounded by an immiscible magnetic liquid, both of which are stabilized by a quadrupolar magnetic field. This creates self-healing, non-clogging, anti-fouling and near-frictionless liquid-in-liquid fluidic channels. Manipulation of the field provides flow control, such as valving, splitting, merging and pumping. The latter is achieved by moving permanent magnets that have no physical contact with the liquid channel. We show that this magnetostaltic pumping method can be used to transport whole human blood with very little damage due to shear forces. Haemolysis (rupture of blood cells) is reduced by an order of magnitude compared with traditional peristaltic pumping, in which blood is mechanically squeezed through a plastic tube. Our liquid-in-liquid approach provides new ways to transport delicate liquids, particularly when scaling channels down to the micrometre scale, with no need for high pressures, and could also be used for microfluidic circuitry.

2.
Haematologica ; 108(7): 1734-1747, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36700400

RESUMO

Integrins are heterodimeric transmembrane receptors composed of α and ß chains, with an N-terminal extracellular domain forming a globular head corresponding to the ligand binding site. Integrins regulate various cellular functions including adhesion, migration, proliferation, spreading and apoptosis. On platelets, integrins play a central role in adhesion and aggregation on subendothelial matrix proteins of the vascular wall, thereby ensuring hemostasis. Platelet integrins belong either to the ß1 family (α2ß1, α5ß1 and α6ß1) or to the ß3 family (αIIbß3 and αvß3). On resting platelets, integrins can engage their ligands when the latter are immobilized but not in their soluble form. The effects of various agonists promote an inside-out signal in platelets, increasing the affinity of integrins for their ligands and conveying a modest signal reinforcing platelet activation, called outside-in signaling. This outside-in signal ensures platelet adhesion, shape change, granule secretion and aggregation. In this review, we examine the role of each platelet integrin in hemostatic plug formation, hemostasis and arterial thrombosis and also beyond these classical functions, notably in tumor metastasis and sepsis.


Assuntos
Plaquetas , Trombose , Humanos , Plaquetas/metabolismo , Integrinas/metabolismo , Ligantes , Hemostasia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose/patologia , Agregação Plaquetária
3.
Transfusion ; 63(10): 1937-1950, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37615493

RESUMO

BACKGROUND: Pathogen reduction of platelet concentrates (PCs) using amotosalen and broad-spectrum UVA illumination contributes to the safety of platelet transfusion by reducing the risk of transfusion-transmitted infections. We evaluated the in vitro quality of stored buffy-coat (BC) PCs treated with amotosalen and a prototype light-emitting diode (LED) illuminator. METHODS: Double-dose BC-PCs collected into PAS-III/plasma or SSP+ /plasma (55/45%) were treated with amotosalen in combination with either conventional UVA lamps (INT100 Illuminator 320-400 nm) or LED illuminators at 350 nm. Platelet quality and function were evaluated over 7 days. RESULTS: Platelet counts were conserved during storage in all groups, as was platelet swirling without appearance of macroscopic aggregates. Integrin αIIbß3 and glycoprotein (GP) VI expression remained stable, whereas GPIbα and GPV declined similarly in all groups. UV lamp- and LED-treated PCs displayed similar glucose consumption, lactate generation, and pH variation. Comparable spontaneous and residual P-selectin and phosphatidylserine exposure, activated αIIbß3 exposure, mitochondrial membrane potential, lactate dehydrogenase release, and adhesive properties under flow conditions were observed during storage. The use of SSP+ /plasma compared with PAS-III/plasma better preserved most of these parameters, especially during late storage, irrespective of the type of illuminator. CONCLUSION: Replacing the UVA lamp for photochemical treatment by LED illuminators had no impact on platelet metabolism, spontaneous activation, apoptosis or viability, or on the in vitro function of BC-PCs stored for 7 days in SSP+ or PAS-III/plasma. These findings support improved procedures for the pathogen reduction and storage of PCs, to ensure transfusion safety and retention of platelet functional properties.


Assuntos
Furocumarinas , Raios Ultravioleta , Humanos , Furocumarinas/farmacologia , Plaquetas/metabolismo , Transfusão de Plaquetas , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Preservação de Sangue/métodos
5.
Arterioscler Thromb Vasc Biol ; 40(9): 2127-2142, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32698684

RESUMO

OBJECTIVE: Atherothrombosis occurs upon rupture of an atherosclerotic plaque and leads to the formation of a mural thrombus. Computational fluid dynamics and numerical models indicated that the mechanical stress applied to a thrombus increases dramatically as a thrombus grows, and that strong inter-platelet interactions are essential to maintain its stability. We investigated whether GPVI (glycoprotein VI)-mediated platelet activation helps to maintain thrombus stability by using real-time video-microscopy. Approach and Results: We showed that GPVI blockade with 2 distinct Fab fragments promoted efficient disaggregation of human thrombi preformed on collagen or on human atherosclerotic plaque material in the absence of thrombin. ACT017-induced disaggregation was achieved under arterial blood flow conditions, and its effect increased with wall shear rate. GPVI regulated platelet activation within a growing thrombus as evidenced by the loss in thrombus contraction when GPVI was blocked, and the absence of the disaggregating effect of an anti-GPVI agent when the thrombi were fully activated with soluble agonists. The GPVI-dependent thrombus stabilizing effect was further supported by the fact that inhibition of any of the 4 key immunoreceptor tyrosine-based motif signalling molecules, src-kinases, Syk, PI3Kß, or phospholipase C, resulted in kinetics of thrombus disaggregation similar to ACT017. The absence of ACT017-induced disaggregation of thrombi from 2 afibrinogenemic patients suggests that the role of GPVI requires interaction with fibrinogen. Finally, platelet disaggregation of fibrin-rich thrombi was also promoted by ACT017 in combination with r-tPA (recombinant tissue plasminogen activator). CONCLUSIONS: This work identifies an unrecognized role for GPVI in maintaining thrombus stability and suggests that targeting GPVI could dissolve platelet aggregates with a poor fibrin content.


Assuntos
Afibrinogenemia/sangue , Plaquetas/efeitos dos fármacos , Fibrinogênio/metabolismo , Fragmentos Fab das Imunoglobulinas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Trombose/tratamento farmacológico , Afibrinogenemia/diagnóstico , Afibrinogenemia/genética , Plaquetas/metabolismo , Simulação por Computador , Fibrinogênio/genética , Fibrinolíticos/farmacologia , Humanos , Cinética , Microscopia de Vídeo , Modelos Biológicos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Transdução de Sinais , Estresse Mecânico , Trombina/metabolismo , Trombose/sangue , Trombose/diagnóstico , Trombose/genética
6.
Platelets ; 32(3): 424-428, 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32233694

RESUMO

The core structure of the extracellular basement membrane is made up of self-assembling networks of collagen and laminin which associate with each other through the bridging adapter proteins including the sulfated monomeric glycoprotein nidogen. While collagen and laminin are known to support platelet adhesion and activation via ß1 integrins and glycoprotein (GP) VI, respectively, whether nidogen contributes to platelet activation and hemostasis is unknown. In this study, we demonstrate that recombinant human nidogen-1 supports platelet adhesion and stimulates platelet activation in a phospholipase-C γ-2 (PLCγ2), Src and Syk kinase-dependent manner downstream. Platetet adhesion to nidogen-1 was inhibited by blocking the platelet receptors GPVI and ß1 integrins. Platelet adhesion to nidogen-1 activated the IκB kinase (IKK) complex, while pharmacological inhibition of IKK blocked platelet spreading on nidogen. Taken together our results suggest that nidogen may play a redundant role in hemostasis by activating platelets downstream of GPVI.


Assuntos
Glicoproteínas de Membrana/metabolismo , Ativação Plaquetária/fisiologia , Adesividade Plaquetária/fisiologia , Humanos
7.
Haematologica ; 105(10): 2471-2483, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054087

RESUMO

Blood flow profoundly varies throughout the vascular tree due to its pulsatile nature and to the complex vessel geometry. While thrombus formation has been extensively studied in vitro under steady flow, and in vivo under normal blood flow conditions, the impact of complex hemodynamics such as flow acceleration found in stenosed arteries has gained increased appreciation. We investigated the effect of flow acceleration, characterized by shear rate gradients, on the function of platelets adhering to fibrinogen, a plasma protein which plays a key role in hemostais and thrombosis. While we confirmed that under steady flow, fibrinogen only supports single platelet adhesion, we observed that under shear rate gradients, this surface becomes highly thrombogenic, supporting efficient platelet aggregation leading to occlusive thrombus formation. This shear rate gradient-driven thrombosis is biphasic with an initial step of slow platelet recruitment supported by direct plasma VWF adsorption to immobilized fibrinogen and followed by a second phase of explosive thrombosis initiated by VWF fiber formation on platelet monolayers. In vivo experiments confirmed that shear rate gradients accelerate thrombosis in a VWF-dependent manner. Together, this study characterizes a process of plasma VWF-dependent accelerated thrombosis on immobilized fibrinogen in the presence of shear rate gradients.


Assuntos
Trombose , Fator de von Willebrand , Adesivos , Plaquetas , Fibrinogênio , Humanos , Adesividade Plaquetária , Agregação Plaquetária
8.
Arterioscler Thromb Vasc Biol ; 39(1): 37-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580561

RESUMO

Objective- After activation at the site of vascular injury, platelets differentiate into 2 subpopulations, exhibiting either proaggregatory or procoagulant phenotype. Although the functional role of proaggregatory platelets is well established, the physiological significance of procoagulant platelets, the dynamics of their formation, and spatial distribution in thrombus remain elusive. Approach and Results- Using transmission electron microscopy and fluorescence microscopy of arterial thrombi formed in vivo after ferric chloride-induced injury of carotid artery or mechanical injury of abdominal aorta in mice, we demonstrate that procoagulant platelets are located at the periphery of the formed thrombi. Real-time cell tracking during thrombus formation ex vivo revealed that procoagulant platelets originate from different locations within the thrombus and subsequently translocate towards its periphery. Such redistribution of procoagulant platelets was followed by generation of fibrin at thrombus surface. Using in silico model, we show that the outward translocation of procoagulant platelets can be driven by the contraction of the forming thrombi, which mechanically expels these nonaggregating cells to thrombus periphery. In line with the suggested mechanism, procoagulant platelets failed to translocate and remained inside the thrombi formed ex vivo in blood derived from nonmuscle myosin ( MYH9)-deficient mice. Ring-like distribution of procoagulant platelets and fibrin around the thrombus observed with blood of humans and wild-type mice was not present in thrombi of MYH9-knockout mice, confirming a major role of thrombus contraction in this phenomenon. Conclusions- Contraction of arterial thrombus is responsible for the mechanical extrusion of procoagulant platelets to its periphery, leading to heterogeneous structure of thrombus exterior.


Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/fisiologia , Trombose/etiologia , Animais , Movimento Celular , Fibrina/análise , Camundongos , Agregação Plaquetária/fisiologia
9.
Arterioscler Thromb Vasc Biol ; 38(9): 2041-2053, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30354258

RESUMO

Objective- PI3Kα (phosphoinositide 3-kinase alpha) is a therapeutic target in oncology, but its role in platelets and thrombosis remains ill characterized. In this study, we have analyzed the role of PI3Kα in vitro, ex vivo, and in vivo in 2 models of arterial thrombosis. Approach and Results- Using mice selectively deficient in p110α in the megakaryocyte lineage and isoform-selective inhibitors, we confirm that PI3Kα is not mandatory but participates to thrombus growth over a collagen matrix at arterial shear rate. Our data uncover a role for PI3Kα in low-level activation of the GP (glycoprotein) VI-collagen receptor by contributing to ADP secretion and in turn full activation of PI3Kß and Akt/PKB (protein kinase B). This effect was no longer observed at high level of GP VI agonist concentration. Our study also reveals that over a vWF (von Willebrand factor) matrix, PI3Kα regulates platelet stationary adhesion contacts under arterial flow through its involvement in the outside-in signaling of vWF-engaged αIIbß3 integrin. In vivo, absence or inhibition of PI3Kα resulted in a modest but significant decrease in thrombus size after superficial injuries of mouse mesenteric arteries and an increased time to arterial occlusion after carotid lesion, without modification in the tail bleeding time. Considering the more discrete and nonredundant role of PI3Kα compared with PI3Kß, selective PI3Kα inhibitors are unlikely to increase the bleeding risk at least in the absence of combination with antiplatelet drugs or thrombopenia. Conclusions- This study provides mechanistic insight into the role of PI3Kα in platelet activation and arterial thrombosis.


Assuntos
Hemostasia , Fosfatidilinositol 3-Quinase/fisiologia , Adesividade Plaquetária , Agregação Plaquetária , Trombose/fisiopatologia , Animais , Ativação Enzimática , Feminino , Humanos , Masculino , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de von Willebrand/metabolismo
10.
Blood ; 128(13): 1745-55, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27432876

RESUMO

Binding of coagulation factors to phosphatidylserine (PS)-exposing procoagulant-activated platelets followed by formation of the membrane-dependent enzyme complexes is critical for blood coagulation. Procoagulant platelets formed upon strong platelet stimulation, usually with thrombin plus collagen, are large "balloons" with a small (∼1 µm radius) "cap"-like convex region that is enriched with adhesive proteins. Spatial distribution of blood coagulation factors on the surface of procoagulant platelets was investigated using confocal microscopy. All of them, including factors IXa (FIXa), FXa/FX, FVa, FVIII, prothrombin, and PS-sensitive marker Annexin V were distributed nonhomogeneously: they were primarily localized in the "cap," where their mean concentration was by at least an order of magnitude, higher than on the "balloon." Assembly of intrinsic tenase on liposomes with various PS densities while keeping the PS content constant demonstrated that such enrichment can accelerate this reaction by 2 orders of magnitude. The mechanisms of such acceleration were investigated using a 3-dimensional computer simulation model of intrinsic tenase based on these data. Transmission electron microscopy and focal ion beam-scanning electron microscopy with Annexin V immunogold-labeling revealed a complex organization of the "caps." In platelet thrombi formed in whole blood on collagen under arterial shear conditions, ubiquitous "caps" with increased Annexin V, FX, and FXa binding were observed, indicating relevance of this mechanism for surface-attached platelets under physiological flow. These results reveal an essential heterogeneity in the surface distribution of major coagulation factors on the surface of procoagulant platelets and suggest its importance in promoting membrane-dependent coagulation reactions.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Adulto , Anexina A5/metabolismo , Plaquetas/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Simulação por Computador , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Microscopia Confocal , Microscopia Imunoeletrônica , Fosfatidilserinas/sangue , Ativação Plaquetária/fisiologia , Ligação Proteica , Trombina/metabolismo , Trombose/metabolismo , Trombose/patologia
11.
Haematologica ; 103(5): 898-907, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29472360

RESUMO

Glycoprotein VI, a major platelet activation receptor for collagen and fibrin, is considered a particularly promising, safe antithrombotic target. In this study, we show that human glycoprotein VI signals upon platelet adhesion to fibrinogen. Full spreading of human platelets on fibrinogen was abolished in platelets from glycoprotein VI- deficient patients suggesting that fibrinogen activates platelets through glycoprotein VI. While mouse platelets failed to spread on fibrinogen, human-glycoprotein VI-transgenic mouse platelets showed full spreading and increased Ca2+ signaling through the tyrosine kinase Syk. Direct binding of fibrinogen to human glycoprotein VI was shown by surface plasmon resonance and by increased adhesion to fibrinogen of human glycoprotein VI-transfected RBL-2H3 cells relative to mock-transfected cells. Blockade of human glycoprotein VI with the Fab of the monoclonal antibody 9O12 impaired platelet aggregation on preformed platelet aggregates in flowing blood independent of collagen and fibrin exposure. These results demonstrate that human glycoprotein VI binds to immobilized fibrinogen and show that this contributes to platelet spreading and platelet aggregation under flow.


Assuntos
Plaquetas/fisiologia , Fibrinogênio/metabolismo , Leucemia Basofílica Aguda/patologia , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Animais , Humanos , Leucemia Basofílica Aguda/genética , Leucemia Basofílica Aguda/metabolismo , Camundongos , Adesividade Plaquetária , Glicoproteínas da Membrana de Plaquetas/genética , Ratos , Quinase Syk/genética , Quinase Syk/metabolismo , Trombose , Células Tumorais Cultivadas
12.
Blood ; 126(5): 683-91, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25977585

RESUMO

Fibrin, the coagulation end product, consolidates the platelet plug at sites of vascular injury and supports the recruitment of circulating platelets. In addition to integrin αIIbß3, another as-yet-unidentified receptor is thought to mediate platelet interaction with fibrin. Platelet glycoprotein VI (GPVI) interacts with collagen and several other adhesive macromolecules. We evaluated the hypothesis that GPVI could be a functional platelet receptor for fibrin. Calibrated thrombin assays using platelet-rich plasma (PRP) showed that tissue factor-triggered thrombin generation was impaired in GPVI-deficient patients and reduced by the anti-GPVI Fab 9O12. Assays on reconstituted PRP and PRP from fibrinogen-deficient patients revealed a fibrinogen-dependent enhancement of thrombin generation, which relied on functional GPVI. The effect of GPVI was found to depend on fibrin polymerization. A binding assay showed a specific interaction between GPVI-Fc and fibrin, inhibited by the Fab 9O12. This Fab also reduced platelet adhesion to fibrin at low (300 s(-1)) and high (1500 s(-1)) wall shear rates. Platelets adherent to fibrin displayed shape change, exposure of procoagulant phospholipids, and the formation of small clots. When hirudinated blood was perfused at 1500 s(-1) over preformed fibrin-rich clots, the Fab 9O12 decreased the recruitment of platelets by up to 85%. This study identifies GPVI as a platelet receptor for polymerized fibrin with 2 major functions: (1) amplification of thrombin generation and (2) recruitment of circulating platelets to clots. These so-far-unrecognized properties of GPVI confer on it a key role in thrombus growth and stabilization.


Assuntos
Fibrina/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombina/biossíntese , Animais , Plaquetas/metabolismo , Estudos de Casos e Controles , Colágeno/metabolismo , Fibrina/química , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Adesividade Plaquetária , Glicoproteínas da Membrana de Plaquetas/deficiência , Glicoproteínas da Membrana de Plaquetas/genética , Polimerização , Ligação Proteica , Trombose/sangue , Trombose/etiologia
13.
Platelets ; 28(6): 529-539, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28032527

RESUMO

Outcome of patients with coronary artery disease has been significantly improved by percutaneous coronary interventions with stent implantation. However, despite progress made on devices and antithrombotic treatments, stent thrombosis remains an important issue because of serious adverse consequences. Several mechanisms are assumed to favor stent thrombosis as platelet aggregation, fibrin formation, defective healing and local inflammation. The objective of this study was to evaluate in vitro the thrombogenicity, proinflammatory properties and healing capacities of cobalt-chromium (CoCr), an alloy commonly used for cardiovascular implants. Platelet adhesion was quantified in static and flow conditions. Thrombin generation was performed using the calibrated automated thrombogram. Neutrophil adhesion and formation of extracellular traps were visualized by scanning electron microscopy and by immunofluorescence. The phenotype of endothelial cells grown on CoCr was analyzed using specific antibodies, whereas the procoagulant potential was analyzed by measuring thrombin generation and protein C activation. Our results show that human blood platelets adhere to and are activated on CoCr in static and flow conditions. Overall, CoCr significantly induced thrombin generation in the presence or absence of platelets by 1.5- and 4.8-fold, respectively, involving activation of the contact pathway and activation of platelets. CoCr triggered leukocyte adhesion and behaved as a scaffold for the formation of neutrophil extracellular traps in the presence of platelets. Endothelial cells adhered and formed a monolayer covering CoCr. However, they switched from an anticoagulant phenotype to a procoagulant one with a significant 2.2-fold increase in thrombin generation due to a combined 30% reduced capacity to trigger protein C activation and 30% increased expression of tissue factor. Moreover, endothelial cells grown on CoCr acquired an inflammatory phenotype as indicated by the increased expression of ICAM-1 and VCAM-1. These data show that bare CoCr is prothrombotic and proinflammatory due to its capacity to activate platelets and coagulation and to induce leukocyte adhesion and activation. More importantly, even if endothelialization is achievable, the switch in endothelial phenotype prevents effective healing. Furthermore, we propose our methodology for future preclinical in vitro evaluation of the thrombogenicity of stent materials.


Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Ligas de Cromo , Células Endoteliais/metabolismo , Leucócitos/metabolismo , Stents , Plaquetas/patologia , Células Endoteliais/patologia , Humanos , Leucócitos/patologia , Teste de Materiais
14.
Transfusion ; 55(9): 2207-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25856501

RESUMO

BACKGROUND: Platelets (PLTs) are currently stored at room temperature (RT) for 5 to 7 days. So far, there exists no validated method for the preparation and long-term storage of dehydrated PLTs suitable for transfusion after rehydration. In this study, a desiccation process, zeodration, was applied to PLTs. STUDY DESIGN AND METHODS: A complete procedure of dehydration at RT by zeodration was employed. Zeodrated human and mouse PLTs were characterized in vitro. Zeodrated mouse PLTs were transfused into clopidogrel-treated mice to evaluate their hemostatic properties. RESULTS: The optimal conditions for dehydration of PLTs at RT in a laboratory scale zeodrator were defined as 145 mbar and 20.2 ± 1.5 °C. The recovery rate was 85 ± 2% and the dryness of zeodrated PLTs (Z_PLTs) indicated that they were sufficiently stable for long-term storage. Rehydrated Z_PLTs were round, were not aggregated, and expressed the glycoproteins required for PLT function. Z_PLTs agglutinated in the presence of von Willebrand factor (VWF) and aggregated in response to thrombin or collagen independently of an active metabolism. In a flow system, Z_PLTs could adhere to VWF and form aggregates on a collagen matrix. Thrombin was generated at the surface of Z_PLTs as efficiently as on fresh PLTs. In clopidogrel-treated mice, which exhibited a severely prolonged bleeding time, continuous perfusion of Z_PLTs restored normal hemostasis. CONCLUSION: Zeodration represents a new strategy to prepare PLTs with partly preserved aggregative properties after storage and rehydration. Z_PLTs have potential hemostatic properties provided it is possible to improve their transfusion efficacy.


Assuntos
Plaquetas/metabolismo , Preservação de Sangue/métodos , Dessecação/métodos , Hemostasia , Adesividade Plaquetária , Animais , Plaquetas/citologia , Preservação de Sangue/instrumentação , Dessecação/instrumentação , Humanos , Camundongos , Trombina/metabolismo
16.
Circulation ; 128(5): 541-52, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23797810

RESUMO

BACKGROUND: Laminins are major components of basement membranes, well located to interact with platelets upon vascular injury. Laminin-111 (α1ß1γ1) is known to support platelet adhesion but is absent from most blood vessels, which contain isoforms with the α2, α4, or α5 chain. Whether vascular laminins support platelet adhesion and activation and the significance of these interactions in hemostasis and thrombosis remain unknown. METHODS AND RESULTS: Using an in vitro flow assay, we show that laminin-411 (α4ß1γ1), laminin-511 (α5ß1γ1), and laminin-521 (α5ß2γ1), but not laminin-211 (α2ß1γ1), allow efficient platelet adhesion and activation across a wide range of arterial wall shear rates. Adhesion was critically dependent on integrin α6ß1 and the glycoprotein Ib-IX complex, which binds to plasmatic von Willebrand factor adsorbed on laminins. Glycoprotein VI did not participate in the adhesive process but mediated platelet activation induced by α5-containing laminins. To address the significance of platelet/laminin interactions in vivo, we developed a platelet-specific knockout of integrin α6. Platelets from these mice failed to adhere to laminin-411, laminin-511, and laminin-521 but responded normally to a series of agonists. α6ß1-Deficient mice presented a marked decrease in arterial thrombosis in 3 models of injury of the carotid, aorta, and mesenteric arterioles. The tail bleeding time and blood loss remained unaltered, indicating normal hemostasis. CONCLUSIONS: This study reveals an unsuspected important contribution of laminins to thrombus formation in vivo and suggests that targeting their main receptor, integrin α6ß1, could represent an alternative antithrombotic strategy with a potentially low bleeding risk.


Assuntos
Adesão Celular/fisiologia , Integrina alfa6beta1/metabolismo , Ativação Plaquetária/fisiologia , Adesividade Plaquetária/fisiologia , Trombose/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Humanos , Integrina alfa6beta1/fisiologia , Laminina/fisiologia , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Risco , Trombose/patologia
17.
Arterioscler Thromb Vasc Biol ; 33(6): 1221-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23559635

RESUMO

OBJECTIVE: The glycoprotein (GP) Ib-V-IX complex regulates the adhesion, activation, and procoagulant activity of platelets. We previously reported that RAM.1, a rat monoclonal antibody directed against the extracellular domain of mouse GPIbß, diminished adhesion of platelets and chinese hamster ovary cells transfected with the human GPIb-IX complex to von Willebrand factor under flow conditions. Here, we further evaluated the functional importance of GPIbß by studying the impact of RAM.1 on GPIb-mediated platelet responses and in vitro and in vivo thrombus formation. APPROACH AND RESULTS: We show that RAM.1 dramatically reduced GPIb-mediated filopodia extension of chinese hamster ovary GPIb-IX cells after adhesion to von Willebrand factor. RAM.1 also reduced filopodia extension and GPIb-mediated Ca(2+) signaling after adhesion of mouse platelets to von Willebrand factor. RAM.1 inhibited thrombin generation in platelet-rich plasma without impairing phosphatidylserine exposure. In addition, RAM.1 reduced thrombus formation after perfusion of mouse whole blood over collagen in a shear-dependent manner. This effect was confirmed in vivo, because injection of F(ab)'2 fragments of RAM.1 diminished thrombus formation induced by laser beam injury of mesenteric arterioles and forceps injury of the abdominal aorta. In contrast, RAM.1 F(ab)'2 did not prolong the tail-bleeding time or increase the volume of blood lost. CONCLUSIONS: These findings are the first evidence that targeting a subunit other than GPIbα can lead to an antithrombotic effect via the GPIb-V-IX complex. This could represent an alternative way to reduce thrombus formation with a minor impact on hemostasis.


Assuntos
Arteriopatias Oclusivas/prevenção & controle , Adesividade Plaquetária/fisiologia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Trombose/prevenção & controle , Fator de von Willebrand/metabolismo , Animais , Arteriopatias Oclusivas/fisiopatologia , Tempo de Sangramento , Adesão Celular/fisiologia , Cricetinae , Modelos Animais de Doenças , Humanos , Camundongos , Adesividade Plaquetária/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Distribuição Aleatória , Ratos , Sensibilidade e Especificidade , Transdução de Sinais , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Trombose/fisiopatologia
18.
Heliyon ; 10(5): e26550, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463800

RESUMO

Microfluidic blood flow models have been instrumental to study the functions of blood platelets in hemostasis and arterial thrombosis. However, they are not suited to investigate the interactions of platelets with the foreign surfaces of medical devices such as stents, mainly because of the dimensions and geometry of the microfluidic channels. Indeed, the channels of microfluidic chips are usually rectangular and rarely exceed 50 to 100 µm in height, impairing the insertion of clinically used stents. To fill this gap, we have developed an original macrofluidic flow system, which precisely reproduces the size and geometry of human vessels and therefore represents a biomimetic perfectly suited to insert a clinical stent and study its interplay with blood cells. The system is a circular closed loop incorporating a macrofluidic flow chamber made of silicone elastomer, which can mimic the exact dimensions of any human vessel, including the coronary, carotid or femoral artery. These flow chambers allow the perfect insertion of stents as they are implanted in patients. Perfusion of whole blood anticoagulated with hirudin through the device at relevant flow rates allows one to observe the specific accumulation of fluorescently labeled platelets on the stent surface using video-microscopy. Scanning electron microscopy revealed the formation of very large thrombi composed of tightly packed activated platelets on the stents.

19.
J Exp Clin Cancer Res ; 43(1): 84, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493157

RESUMO

BACKGROUND: How platelets interact with and influence the tumor microenvironment (TME) remains poorly characterized. METHODS: We compared the presence and participation of platelets in the TME of two tumors characterized by highly different TME, PyMT AT-3 mammary tumors and B16F1 melanoma. RESULTS: We show that whereas firmly adherent platelets continuously line tumor vessels of both AT-3 and B16F1 tumors, abundant extravascular stromal clusters of platelets from thrombopoietin-independent origin were present only in AT-3 mammary tumors. We further show that platelets influence the angiogenic and inflammatory profiles of AT-3 and B16F1 tumors, though with very different outcomes according to tumor type. Whereas thrombocytopenia increased bleeding in both tumor types, it further caused severe endothelial degeneration associated with massive vascular leakage, tumor swelling, and increased infiltration of cytotoxic cells, only in AT-3 tumors. CONCLUSIONS: These results indicate that while platelets are integral components of solid tumors, their localization and origin in the TME, as well as their impact on its shaping, are tumor type-dependent.


Assuntos
Neoplasias Mamárias Animais , Microambiente Tumoral , Animais , Humanos
20.
Nat Commun ; 15(1): 3297, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740748

RESUMO

Despite abundant evidence demonstrating that platelets foster metastasis, anti-platelet agents have low therapeutic potential due to the risk of hemorrhages. In addition, whether platelets can regulate metastasis at the late stages of the disease remains unknown. In this study, we subject syngeneic models of metastasis to various thrombocytopenic regimes to show that platelets provide a biphasic contribution to metastasis. While potent intravascular binding of platelets to tumor cells efficiently promotes metastasis, platelets further support the outgrowth of established metastases via immune suppression. Genetic depletion and pharmacological targeting of the glycoprotein VI (GPVI) platelet-specific receptor in humanized mouse models efficiently reduce the growth of established metastases, independently of active platelet binding to tumor cells in the bloodstream. Our study demonstrates therapeutic efficacy when targeting animals bearing growing metastases. It further identifies GPVI as a molecular target whose inhibition can impair metastasis without inducing collateral hemostatic perturbations.


Assuntos
Plaquetas , Metástase Neoplásica , Glicoproteínas da Membrana de Plaquetas , Animais , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Humanos , Camundongos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/genética , Linhagem Celular Tumoral , Feminino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA