Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 566, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644382

RESUMO

BACKGROUND: The tuberculosis (TB) epidemic remains a major global health problem and Eswatini is not excluded. Our study investigated the circulating genotypes in Eswatini and compared them at baseline (start of treatment) and follow-up during TB treatment. METHODS: Three hundred and ninety (n = 390) participants were prospectively enrolled from referral clinics and patients who met the inclusion criteria, were included in the study. A total of 103 participants provided specimens at baseline and follow-up within six months. Mycobacterium tuberculosis (M.tb) strains were detected by GeneXpert® MTB/RIF assay (Cephied, USA) and Ziehl -Neelsen (ZN) microscopy respectively at baseline and follow-up time-points respectively. The 206 collected specimens were decontaminated and cultured on BACTEC™ MGIT™ 960 Mycobacteria Culture System (Becton Dickinson, USA). Drug sensitivity testing was performed at both baseline and follow-up time points. Spoligotyping was performed on both baseline and follow-up strains after DNA extraction. RESULTS: Resistance to at least one first line drug was detected higher at baseline compared to follow-up specimens with most of them developing into multidrug-resistant (MDR)-TB. A total of four lineages and twenty genotypes were detected. The distribution of the lineages varied among the different regions in Eswatini. The Euro-American lineage was the most prevalent with 46.12% (95/206) followed by the East Asian with 24.27% (50/206); Indo-Oceanic at 9.71% (20/206) and Central Asian at 1.94% (4/206). Furthermore, a high proportion of the Beijing genotype at 24.27% (50/206) and S genotype at 16.50% (34/206) were detected. The Beijing genotype was predominant in follow-up specimens collected from the Manzini region with 48.9% (23/47) (p = 0.001). A significant proportion of follow-up specimens developed MDR-TB (p = 0.001) with Beijing being the major genotype in most follow-up specimens (p < 0.000). CONCLUSION: Eswatini has a high M.tb genotypic diversity. A significant proportion of the TB infected participants had the Beijing genotype associated with MDR-TB in follow-up specimens and thus indicate community wide transmission.


Assuntos
Mycobacterium tuberculosis , Humanos , Essuatíni , Seguimentos , Genótipo , Mycobacterium tuberculosis/genética
2.
BMC Infect Dis ; 20(1): 556, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736602

RESUMO

BACKGROUND: There is a general dearth of information on extrapulmonary tuberculosis (EPTB). Here, we investigated Mycobacterium tuberculosis (Mtb) drug resistance and transmission patterns in EPTB patients treated in the Tshwane metropolitan area, in South Africa. METHODS: Consecutive Mtb culture-positive non-pulmonary samples from unique EPTB patients underwent mycobacterial genotyping and were assigned to phylogenetic lineages and transmission clusters based on spoligotypes. MTBDRplus assay was used to search mutations for isoniazid and rifampin resistance. Machine learning algorithms were used to identify clinically meaningful patterns in data. We computed odds ratio (OR), attributable risk (AR) and corresponding 95% confidence intervals (CI). RESULTS: Of the 70 isolates examined, the largest cluster comprised 25 (36%) Mtb strains that belonged to the East Asian lineage. East Asian lineage was significantly more likely to occur within chains of transmission when compared to the Euro-American and East-African Indian lineages: OR = 10.11 (95% CI: 1.56-116). Lymphadenitis, meningitis and cutaneous TB, were significantly more likely to be associated with drug resistance: OR = 12.69 (95% CI: 1.82-141.60) and AR = 0.25 (95% CI: 0.06-0.43) when compared with other EPTB sites, which suggests that poor rifampin penetration might be a contributing factor. CONCLUSIONS: The majority of Mtb strains circulating in the Tshwane metropolis belongs to East Asian, Euro-American and East-African Indian lineages. Each of these are likely to be clustered, suggesting on-going EPTB transmission. Since 25% of the drug resistance was attributable to sanctuary EPTB sites notorious for poor rifampin penetration, we hypothesize that poor anti-tuberculosis drug dosing might have a role in the development of resistance.


Assuntos
Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Tuberculose/transmissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Isoniazida/uso terapêutico , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Filogenia , Rifampina/uso terapêutico , África do Sul , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto Jovem
3.
J Clin Microbiol ; 56(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29514936

RESUMO

Modern advances in genomics provide an opportunity to reinterpret historical bacterial culture collections. In this study, genotypic antibiotic resistance profiles of Mycobacterium tuberculosis isolates from a historical 20-year-old multidrug-resistant tuberculosis (MDR-TB) culture collection in South Africa are described. DNA samples extracted from the phenotypically MDR-TB isolates (n = 240) were assayed by Hain line probe assay (LPA) for the confirmation of MDR-TB and by Illumina Miseq whole-genome sequencing (WGS) for the characterization of mutations in eight genes (rpoB, katG, inhA, rpsL, pncA, embB, gyrA, and rrs) that are known to code for resistance to commonly used anti-TB agents. LPA identified 71.3% of the TB isolates as MDR-TB, 18.3% as rifampin (RIF) monoresistant, 2% as isoniazid (INH) monoresistant, and 8.3% as susceptible to both RIF and INH (RIF+INH). In a subset of 42 randomly selected isolates designated as RIF+INH resistant by Löwenstein-Jensen (LJ) culture in 1993, LPA and WGS results confirmed MDR-TB. In all five INH-monoresistant isolates by LPA and in all but one (the wild type) of the 34 successfully sequenced RIF-monoresistant isolates, WGS revealed matching mutations. Only 26% of isolates designated as susceptible by LPA, however, were found to be wild type by WGS. Novel mutations were found in the rpoB (Thr480Ala, Gln253Arg, Val249Met, Val251Tyr, Val251Phe), katG (Trp477STOP, Gln88STOP, Trp198STOP, Trp412STOP), embB (Thr11Xaa, Gln59Pro), and pncA (Thr100Ile, Thr159Ala, Ala134Arg, Val163Ala, Thr153Ile, DelGpos7, Phe106Ser) genes. Three MDR-TB isolates showed mutations in both the gyrA and rrs genes, suggesting that extensively drug-resistant tuberculosis existed in South Africa well before its formal recognition in 2006.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Genótipo , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Adulto , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Feminino , Genes Bacterianos , Humanos , Masculino , Mycobacterium tuberculosis/isolamento & purificação , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , África do Sul
4.
BMC Infect Dis ; 17(1): 795, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29282012

RESUMO

BACKGROUND: The incidence of multidrug-resistant tuberculosis (MDR-TB) is increasing and the emergence of extensively drug-resistant tuberculosis (XDR-TB) is a major challenge. Controlling resistance, reducing transmission and improving treatment outcomes in MDR/XDR-TB patients is reliant on susceptibility testing. Susceptibility testing using phenotypic methods is labour intensive and time-consuming. Alternative methods, such as molecular assays are easier to perform and have a rapid turn-around time. The World Health Organization (WHO) has endorsed the use of line probe assays (LPAs) for first and second line diagnostic screening of MDR/XDR-TB. METHODS: We compared the performance of LPAs to BACTEC MGIT 960 system for susceptibility testing of bacterial resistance to first-line drugs: rifampicin (RIF), isoniazid (INH), ethambutol (EMB), and second-line drugs ofloxacin (OFL) and kanamycin (KAN). One hundred (100) consecutive non-repeat Mycobacterium tuberculosis cultures, resistant to either INH or RIF or both, as identified by BACTEC MGIT 960 were tested. All isoniazid resistant cultures (n = 97) and RIF resistant cultures (n = 90) were processed with Genotype®MTBDRplus and Genotype®MTBDRsl line probe assays (LPAs). The agar proportion method was employed to further analyze discordant LPAs and the MGIT 960 isolates. RESULTS: The Genotype ®MTBDRplus (version 2) sensitivity, specificity, PPV and NPV from culture isolates were as follows: RIF, 100%, 87.9, 58.3% and 100%; INH, 100%, 94.4%, 93.5% and 100%. The sensitivity, specificity PPV and NPV for Genotype ® MTBDRsl (version 1 and 2) from culture isolates were as follows: EMB, 60.0%, 89.2%, 68.2% and 85.3%; OFL, 100%, 91.4%, 56.2% and 100%; KAN, 100%, 97.7%, 60.0% and 100%. Line probe assay showed an excellent agreement (k = 0.93) for INH susceptibility testing when compared to MGIT 960 system while there was good agreement (k = 0.6-0.7) between both methods for RIF, OFL, KAN testing and moderate agreement for EMB (k = 0.5). A high RIF mono-resistance (MGIT 960 33/97 and LPA 43/97) was observed. CONCLUSION: LPAs are an efficient and reliable rapid molecular DST assay for rapid susceptibility screening of MDR and XDR-TB. Using LPAs in high MDR/XDR burden countries allows for appropriate and timely treatment, which will reduce transmission rates, morbidity and improve treatment outcomes in patients.


Assuntos
Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Etambutol/farmacologia , Feminino , Genótipo , Humanos , Isoniazida/farmacologia , Canamicina/farmacologia , Laboratórios , Masculino , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Ofloxacino/farmacologia , Encaminhamento e Consulta , Rifampina/farmacologia , África do Sul
5.
J Clin Microbiol ; 53(12): 3779-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378284

RESUMO

The technical limitations of common tests used for detecting pyrazinamide (PZA) resistance in Mycobacterium tuberculosis isolates pose challenges for comprehensive and accurate descriptions of drug resistance in patients with multidrug-resistant tuberculosis (MDR-TB). In this study, a 606-bp fragment (comprising the pncA coding region plus the promoter) was sequenced using Ion Torrent next-generation sequencing (NGS) to detect associated PZA resistance mutations in 88 recultured MDR-TB isolates from an archived series collected in 2001. These 88 isolates were previously Sanger sequenced, with 55 (61%) designated as carrying the wild-type pncA gene and 33 (37%) showing mutations. PZA susceptibility of the isolates was also determined using the Bactec 460 TB system and the Wayne test. In this study, isolates were recultured and susceptibility testing was performed in Bactec 960 MGIT. Concordance between NGS and MGIT results was 93% (n = 88), and concordance values between the Bactec 460, the Wayne test, or pncA gene Sanger sequencing and NGS results were 82% (n = 88), 83% (n = 88), and 89% (n = 88), respectively. NGS confirmed the majority of pncA mutations detected by Sanger sequencing but revealed several new and mixed-strain mutations that resolved discordancy in other phenotypic results. Importantly, in 53% (18/34) of these isolates, pncA mutations were located in the 151 to 360 region and warrant further exploration. In these isolates, with their known resistance to rifampin, NGS of pncA improved PZA resistance detection sensitivity to 97% and specificity to 94% using NGS as the gold standard and helped to resolve discordant results from conventional methodologies.


Assuntos
Amidoidrolases/genética , Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/farmacologia , Técnicas de Genotipagem/métodos , Humanos , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade
6.
Front Public Health ; 12: 1356826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566794

RESUMO

Purpose: This study examined the patterns and frequency of genetic changes responsible for resistance to first-line (rifampicin and isoniazid), fluoroquinolones, and second-line injectable drugs in drug-resistant Mycobacterium tuberculosis (MTB) isolated from culture-positive pulmonary tuberculosis (PTB) symptomatic attendees of spiritual holy water sites (HWSs) in the Amhara region. Patients and methods: From June 2019 to March 2020, a cross-sectional study was carried out. A total of 122 culture-positive MTB isolates from PTB-suspected attendees of HWSs in the Amhara region were evaluated for their drug resistance profiles, and characterized gene mutations conferring resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs), and second-line injectable drugs (SLIDs) using GenoType®MTBDRplus VER2.0 and GenoType®MTBDRsl VER2.0. Drug-resistant MTB isolates were Spoligotyped following the manufacturer's protocol. Results: Genetic changes (mutations) responsible for resistance to RIF, INH, and FLQs were identified in 15/122 (12.3%), 20/122 (16.4%), and 5/20 (25%) of MTB isolates, respectively. In RIF-resistant, rpoB/Ser531Lue (n = 12, 80%) was most frequent followed by His526Tyr (6.7%). Amongst INH-resistant isolates, katG/Ser315Thr1 (n = 19, 95%) was the most frequent. Of 15 MDR-TB, the majority (n = 12, 80%) isolates had mutations at both rpoB/Ser531Leu and katG/Ser315Thr1. All 20 INH and/or RIF-resistant isolates were tested with the MTBDRsl VER 2.0, yielding 5 FLQs-resistant isolates with gene mutations at rpoB/Ser531Lue, katG/Ser315Thr1, and gyrA/Asp94Ala genes. Of 20 Spoligotyped drug-resistant MTB isolates, the majority (n = 11, 55%) and 6 (30%) were SIT149/T3-ETH and SIT21/CAS1-Kili sublineages, respectively; and they were any INH-resistant (mono-hetero/multi-). Of 15 RIF-resistant (RR/MDR-TB) isolates, 7 were SIT149/T3-ETH, while 6 were SIT21/CAS1-Kili sublineages. FLQ resistance was detected in four SIT21/CAS1-Kili lineages. Conclusion: In the current study, the most common gene mutations responsible for resistance to INH, RIF, and FLQs were identified. SIT149/T3-ETH and SIT21/CAS1-Kili constitute the majority of drug-resistant TB (DR-TB) isolates. To further understand the complete spectrum of genetic changes/mutations and related genotypes, a sequencing technology is warranted.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Isoniazida/farmacologia , Rifampina/farmacologia , Etiópia , Estudos Transversais , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Mutação , Genótipo , Fluoroquinolonas
7.
Int J Microbiol ; 2024: 3132498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623557

RESUMO

Ethiopia is a high-tuberculosis (TB) burden country with 157 new cases per 100,000 people, with 23,800 TB-related deaths in 2020. In Ethiopia, TB patients have different healthcare-seeking behaviors. They frequently visit spiritual places, such as holy water sites (HWSs), to seek treatment for their illness spiritually. This study examined the prevalence of pulmonary TB (PTB) and drug susceptibility profiles of Mycobacterium tuberculosis (MTB) isolates among spiritual HWS attendees in Northwest Ethiopia. A cross-sectional study was conducted from June 2019 to March 2020. Sputum samples were collected, processed, and cultured using Löwenstein-Jensen (LJ) culture medium. Second-generation line probe assays (LPAs), GenoType®MTBDRplus VER2.0 and GenoType®MTBDRsl VER2.0, were used to detect anti-TB drug-resistant isolates. STATA 17 was utilized to perform descriptive statistics, bivariate, and multivariate regression analyses. Of 560 PTB-symptomatic participants, 21.8% ((95% confidence interval (95 CI): 18.4-25.2%)) were culture-positive, resulting in a point prevalence of 1,183/100,000 attendees. Amongst HWS attendees, culture-positive TB occurred most commonly in persons 18-33 years of age (28.5% (95 CI 23.4-34.3%)). Other participant characteristics significantly associated with culture-positive PTB were as follows: rural residents (adjusted odds ratio (aOR) 2.65; 95 CI 1.38-5.10), married participants (aOR 2.43; 95 CI 1.28-4.63), family members >5 per household (aOR 1.84; 95 CI 1.04-3.24), and sharing living space (aOR 10.57; 95 CI 3.60-31.13). Also, among 438 participants followed for 12 months after showing negative TB culture results while at the HWS, 6.8% (95 CI 4.4-9.4%) developed or contracted culture-positive TB post-residency at the HWSs. Of the 122 tested isolates, 20 (16.4%) were isoniazid (INH) and/or rifampicin (RIF) resistant. Multidrug-resistant (MDR) TB was detected in 15 cases (12.3%), five of which were fluoroquinolones (FLQs) resistant. The findings from this study should raise a concern about HWSs as potential high-risk settings for TB transmission. It is recommended that appropriate control measures be instituted that include compulsory TB testing and tightened infection control at HWSs, where an increased risk exists for transmission of TB.

8.
New Microbes New Infect ; 59: 101235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590765

RESUMO

Background: The genetic diversity of Mycobacterium tuberculosis complex (MTBC) strains was characterized among isolates from individuals with pulmonary tuberculosis (PTB) symptoms attended holy water sites (HWSs) in the Amhara region, Ethiopia. Methods: A cross-sectional study was done from June 2019 to March 2020 to describe the genetic diversity and drug-resistance profiles of MTBC isolates. Sputum specimens were collected and cultured in the Löwenstein-Jensen culture medium. Line Probe Assay, MTBDRplus VER 2.0, and MTBDRsl VER 2.0 were used to detect first-and second-line anti-TB drug-resistance patterns. A spoligotyping technique was utilized to characterize the genetic diversity. Statistical analysis was performed using STATA 15. Results: Of 560 PTB-symptomatic participants, 122 (21.8%) were culture-positive cases. Spoligotyping of 116 isolates revealed diverse MTBC sublineages, with four major lineages: Euro-American (EA) (Lineage 4), East-African-Indian (EAI) (Lineage 3), Ethiopian (ETH) (Lineage 7), East Asian (EA) (Lineage 2). The majority (96.6%) of the isolates were EA (lineage 4) and EAI, with proportions of 54.3% and 42.2%, respectively. A total of 31 spoligotype patterns were identified, 26 of which were documented in the SITVIT2 database. Of these, there were 15 unique spoligotypes, while eleven were grouped with 2-17 isolates. SIT149/T3-ETH (n = 17), SIT26/CAS1-DELHI (n = 16), SIT25/CAS1-DELHI (n = 12), and SIT52/T2 (n = 11) spoligotypes were predominant. A rare spoligotype pattern: SIT41/Turkey and SIT1/Beijing, has also been identified in North Shewa. The overall clustering rate of sub-lineages with known SIT was 76.4%.Of the 122 culture-positive isolates tested, 16.4% were resistant to rifampicin (RIF) and/or isoniazid (INH). Multidrug-resistant TB (MDR-TB) was detected in 12.3% of isolates, five of which were fluoroquinolones (FLQs) resistant. SIT149/T3-ETH and SIT21/CAS1-KILI sublineages showed a higher proportion of drug resistance. Conclusions: Diverse MTBC spoligotypes were identified, with the T and CAS families and EA (lineage 4) predominating. A high prevalence of drug-resistant TB, with SIT149/T3-ETH and CAS1-KILI sublineages comprising a greater share, was observed. A study with large sample size and a sequencing method with stronger discriminatory power is warranted to understand better the genetic diversity of circulating MTBC in this cohort of study, which would help to adopt targeted interventions.

9.
Front Cell Infect Microbiol ; 14: 1328123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481664

RESUMO

Background: An outbreak of multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae infections in a neonatal ward within a tertiary hospital in South Africa resulted in the mortality of 10 patients within six months. In this work, the genomic epidemiology of and the molecular factors mediating this outbreak were investigated. Methods: Bacterial cultures obtained from clinical samples collected from the infected neonates underwent phenotypic and molecular analyses to determine their species, sensitivity to antibiotics, production of carbapenemases, complete resistance genes profile, clonality, epidemiology, and evolutionary relationships. Mobile genetic elements flanking the resistance genes and facilitating their spread were also characterized. Results: The outbreak was centered in two major wards and affected mainly neonates between September 2019 and March 2020. Most isolates (n = 27 isolates) were K. pneumoniae while both E. coli and E. cloacae had three isolates each. Notably, 33/34 isolates were multidrug resistant (MDR), with 30 being resistant to at least four drug classes. All the isolates were carbapenemase-positive, but four bla OXA-48 isolates were susceptible to carbapenems. Bla NDM-1 (n = 13) and bla OXA-48/181 (n = 15) were respectively found on IS91 and IS6-like IS26 composite transposons in the isolates alongside several other resistance genes. The repertoire of resistance and virulence genes, insertion sequences, and plasmid replicon types in the strains explains their virulence, resistance, and quick dissemination among the neonates. Conclusions: The outbreak of fatal MDR infections in the neonatal wards were mediated by clonal (vertical) and horizontal (plasmid-mediated) spread of resistant and virulent strains (and genes) that have been also circulating locally and globally.


Assuntos
Infecções por Enterobacteriaceae , Klebsiella pneumoniae , Recém-Nascido , Humanos , Escherichia coli/genética , Enterobacter cloacae/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Epidemiologia Molecular , África do Sul/epidemiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Centros de Atenção Terciária , Surtos de Doenças , Testes de Sensibilidade Microbiana
10.
J Clin Tuberc Other Mycobact Dis ; 35: 100435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38601919

RESUMO

Antimicrobial resistance alongside other challenges in tuberculosis (TB) therapeutics have stirred renewed interest in host-directed interventions, including the role of antibodies as adjunct therapeutic agents. This study assessed the binding efficacy of two novel IgG1 opsonic monoclonal antibodies (MABs; GG9 & JG7) at 5, 10, and 25 µg/mL to live cultures of Mycobacterium tuberculosis, M. avium, M. bovis, M. fortuitum, M. intracellulare, and M. smegmatis American Type Culture Collection laboratory reference strains, as well as clinical susceptible, multi-drug resistant, and extensively drug resistant M. tuberculosis strains using indirect enzyme-linked immunosorbent assays. These three MAB concentrations were selected from a range of concentrations used in previous optimization (binding and functional) assays. Both MABs bound to all mycobacterial species and sub-types tested, albeit to varying degrees. Statistically significant differences in MAB binding activity were observed when comparing the highest and lowest MAB concentrations (p < 0.05) for both MABs GG9 and JG7, irrespective of the M. tuberculosis resistance profile. Binding affinity increased with an increase in MAB concentration, and optimal binding was observed at 25 µg/mL. JG7 showed better binding activity than GG9. Both MABs also bound to five MOTT species, albeit at varied levels. This non-selective binding to different mycobacterial species suggests a potential role for GG9 and JG7 as adjunctive agents in anti-TB chemotherapy with the aim to enhance bacterial killing.

11.
Infect Drug Resist ; 16: 2953-2961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201127

RESUMO

Purpose: Advances in molecular tools that assess genes harboring drug resistance mutations have greatly improved the detection and treatment of drug-resistant tuberculosis (DR-TB). This study was conducted to determine the frequency and type of mutations that are responsible for resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs) and second-line injectable drugs (SLIDs) in Mycobacterium tuberculosis (MTB) isolates obtained from culture-positive pulmonary tuberculosis (TB) patients in the central, southeastern and eastern Ethiopia. Patients and Methods: In total, 224 stored culture-positive MTB isolates from pulmonary TB patients referred to Adama and Harar regional TB laboratories between August 2018 and January 2019 were assessed for mutations conferring RIF, INH, FLQs and SLIDs resistance using GenoType®MTBDRplus (MTBDRplus) and GenoType®MTBDRsl (MTBDRsl). Results: RIF, INH, FLQs and SLIDs resistance-conferring mutations were identified in 88/224 (39.3%), 85/224 (38.0%), 7/77 (9.1%), and 3/77% (3.9%) of MTB isolates, respectively. Mutation codons rpoB S531L (59.1%) for RIF, katG S315T (96.5%) for INH, gyrA A90V (42.1%) for FLQs and WT1 rrs (100%) for SLIDs were observed in the majority of the isolates tested. Over a 10th of rpoB mutations detected in the current study were unknown. Conclusion: In this study, the most common mutations conferring drug resistance to RIF, INH, FLQs were identified. However, a significant proportion of RIF-resistant isolates manifested unknown rpoB mutations. Similarly, although few in number, all SLID-resistant isolates had unknown rrs mutations. To further elucidate the entire spectrum of mutations, tool such as whole-genome sequencing is imperative. Furthermore, the expansion of molecular drug susceptibility testing services is critical for tailoring patient treatment and preventing disease transmission.

12.
Heliyon ; 9(12): e22898, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125463

RESUMO

Introduction: The population structure of Mycobacterium tuberculosis complex (MTBC) in Ethiopia is diverse but dominated by Euro-American (Lineage 4) and East-African-Indian (Lineage 3) lineages. The objective of this study was to describe the genetic diversity of MTBC isolates in Central, Eastern and Southeastern Ethiopia. Methods: A total of 223 MTBC culture isolates obtained from patients referred to Adama and Harar TB reference laboratories were spoligotyped. Demographic and clinical characteristics were collected. Results: Six major lineages: Euro-American (Lineage 4), East-African-Indian (Lineage 3), East Asian (Lineage 2), Indo-Oceanic (Lineage 1), Mycobacterium africanum (Lineage 5 and Lineage 6) and Ethiopian (Lineage 7) were identified. The majority (94.6 %) of the isolates were Euro-American and East-African-Indian, with proportions of 75.3 % and 19.3 %, respectively. Overall, 77 different spoligotype patterns were identified of which 42 were registered in the SITVIT2 database. Of these, 27 spoligotypes were unique, while 15 were clustered with 2-49 isolates. SIT149/T3_ETH (n = 49), SIT53/T1 (n = 33), SIT21/CAS1_Kili (n = 24) and SIT41/Turkey (n = 11) were the dominant spoligotypes. A rare Beijing spoligotype pattern, SIT541, has also been identified in Eastern Ethiopia. The overall clustering rate of sub-lineages with known SIT was 71.3 %. Age group (25-34) was significantly associated with clustering. Conclusion: We found a heterogeneous population structure of MTBC dominated by T and CAS families, and the Euro-American lineage. The identification of the Beijing strain, particularly the rare SIT541 spoligotype in Eastern Ethiopia, warrants a heightened surveillance plan, as little is known about this genotype. A large-scale investigation utilizing a tool with superior discriminatory power, such as whole genome sequencing, is necessary to gain a thorough understanding of the genetic diversity of MTBC in the nation, which would help direct the overall control efforts.

13.
Trop Med Infect Dis ; 7(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36288041

RESUMO

Background: Tuberculosis (TB) remains a significant global public health issue, despite advances in diagnostic technologies, substantial global efforts, and the availability of effective chemotherapies. Mycobacterium tuberculosis, a species of pathogenic bacteria resistant to currently available anti-TB drugs, is on the rise, threatening national and international TB-control efforts. This systematic review and meta-analysis aims to estimate the pooled prevalence of drug-resistant TB (DR-TB) in Ethiopia. Materialsand Methods: A systematic literature search was undertaken using PubMed/MEDLINE, HINARI, the Web of Science, ScienceDirect electronic databases, and Google Scholar (1 January 2011 to 30 November 2020). After cleaning and sorting the records, the data were analyzed using STATA 11. The study outcomes revealed the weighted pooled prevalence of any anti-tuberculosis drug resistance, any isoniazid (INH) and rifampicin (RIF) resistance, monoresistance to INH and RIF, and multidrug-resistant TB (MDR-TB) in newly diagnosed and previously treated patients with TB. Results: A total of 24 studies with 18,908 patients with TB were included in the final analysis. The weighted pooled prevalence of any anti-TB drug resistance was 14.25% (95% confidence interval (CI): 7.05-21.44%)), whereas the pooled prevalence of any INH and RIF resistance was found in 15.62% (95%CI: 6.77-24.47%) and 9.75% (95%CI: 4.69-14.82%) of patients with TB, respectively. The pooled prevalence for INH and RIF-monoresistance was 6.23% (95%CI: 4.44-8.02%) and 2.33% (95%CI: 1.00-3.66%), respectively. MDR-TB was detected in 2.64% (95%CI: 1.46-3.82%) of newly diagnosed cases and 11.54% (95%CI: 2.12-20.96%) of retreated patients with TB, while the overall pooled prevalence of MDR-TB was 10.78% (95%CI: 4.74-16.83%). Conclusions: In Ethiopia, anti-tuberculosis drug resistance is widespread. The estimated pooled prevalence of INH and RIF-monoresistance rates were significantly higher in this review than in previous reports. Moreover, MDR-TB in newly diagnosed cases remained strong. Thus, early detection of TB cases, drug-resistance testing, proper and timely treatment, and diligent follow-up of TB patients all contribute to the improvement of DR-TB management and prevention. Besides this, we urge that a robust, routine laboratory-based drug-resistance surveillance system be implemented in the country.

14.
Ann N Y Acad Sci ; 1467(1): 21-47, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31989644

RESUMO

Increasingly, gut microbiota distortions are being implicated in the pathogenesis of several infectious and noninfectious diseases. Specifically, in the absence of an eubiotic microbiota, mice are more prone to colonization and infection by Mycobacterium tuberculosis (Mtb). In this qualitative analysis, the following were observed: (1) antimicrobials cause long-term gut microbiota perturbations; (2) Mtb causes limited and transient disturbances to the lung-gut microbiota; (3) pathogens (e.g., Helicobacter hepaticus) affect microbiota integrity and reduce resistance to Mtb; (4) dysbiosis depletes bacterial species regulating proper immune functioning, reducing resistance to Mtb; (5) dysregulated immune cells fail to express important pathogen-recognition receptors (e.g., macrophage-inducible C-type lectin; MINCLE) and Mtb-killing cytokines (e.g., IFN-γ, TNF-α, and IL-17), with hampered phagocytic capability; (6) autophagy is central to the immune system's clearance of Mtb, control of inflammation, and immunity-microbiome balance; (7) microbiota-produced short-chain fatty acids, which are reduced by dysbiosis, affect immune cells and increase Mtb proliferation; (8) commensal species (e.g., Lactobacillus plantarum) and microbiota metabolites (e.g., indole propionic acid) reduce tuberculosis progression; and (9) fecal transplants mostly restored eubiosis, increased immune resistance to Mtb, restricted dissemination of Mtb, and reduced tuberculosis-associated organ pathologies. Overuse of antimicrobials, as shown in mice, is a risk factor for reactivating latent or treated tuberculosis.


Assuntos
Anti-Infecciosos/uso terapêutico , Microbioma Gastrointestinal/imunologia , Pulmão/microbiologia , Mycobacterium tuberculosis , Tuberculose/tratamento farmacológico , Animais , Humanos , Camundongos , Tuberculose/microbiologia
15.
mSystems ; 5(6)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323413

RESUMO

The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. A systematic review of all studies published in PubMed database between 2015 to October 2020 was performed. Journal articles evaluating carbapenem and polymyxin resistance mechanisms, respectively, were included. The search identified 171 journal articles for inclusion. Different New Delhi metallo-ß-lactamase (NDM) carbapenemase variants had different transcriptional and affinity responses to different carbapenems. Mutations within the Klebsiella pneumoniae carbapenemase (KPC) mobile transposon, Tn4401, affect its promoter activity and expression levels, increasing carbapenem resistance. Insertion of IS26 in ardK increased imipenemase expression 53-fold. ompCF porin downregulation (mediated by envZ and ompR mutations), micCF small RNA hyperexpression, efflux upregulation (mediated by acrA, acrR, araC, marA, soxS, ramA, etc.), and mutations in acrAB-tolC mediated clinical carbapenem resistance when coupled with ß-lactamase activity in a species-specific manner but not when acting without ß-lactamases. Mutations in pmrAB, phoPQ, crrAB, and mgrB affect phosphorylation of lipid A of the lipopolysaccharide through the pmrHFIJKLM (arnBCDATEF or pbgP) cluster, leading to polymyxin resistance; mgrB inactivation also affected capsule structure. Mobile and induced mcr, efflux hyperexpression and porin downregulation, and Ecr transmembrane protein also conferred polymyxin resistance and heteroresistance. Carbapenem and polymyxin resistance is thus mediated by a diverse range of genetic and transcriptional mechanisms that are easily activated in an inducing environment. The molecular understanding of these emerging mechanisms can aid in developing new therapeutics for multidrug-resistant Enterobacteriaceae isolates.

16.
mSystems ; 5(3)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430406

RESUMO

Extended-spectrum-ß-lactamase (ESBL)-producing Enterobacteriaceae are critical-priority pathogens that cause substantial fatalities. With the emergence of mobile mcr genes mediating resistance to colistin in Enterobacteriaceae, clinicians are now left with few therapeutic options. Eleven clinical Enterobacteriaceae strains with resistance to cephems and/or colistin were genomically analyzed to determine their resistomes, mobilomes, and evolutionary relationships to global strains. The global phylogenomics of mcr genes and mcr-9.1-bearing genomes were further analyzed. Ten isolates were ESBL positive. The isolates were multidrug resistant and phylogenetically related to global clones but distant from local strains. Multiple resistance genes, including bla CTX-M-15 bla TEM-1, and mcr-9.1, were found in single isolates; ISEc9, IS19, and Tn3 transposons bracketed bla CTX-M-15 and bla TEM-1 Common plasmid types included IncF, IncH, and ColRNAI. mcr-9 was of close sequence identity to mcr-3, mcr-5, mcr-7, mcr-8, and mcr-10. Genomes bearing mcr-9.1 clustered into six main phyletic groups (A to F), with those of this study belonging to clade B. Enterobacter species and Salmonella species are the main hosts of mcr-9.1 globally, although diverse promiscuous plasmids disseminate mcr-9.1 across different bacterial species. Emergence of mcr-9.1 in ESBL-producing Enterobacteriaceae in South Africa is worrying, due to the restricted therapeutic options. Intensive One Health molecular surveillance might discover other mcr alleles and inform infection management and antibiotic choices.IMPORTANCE Colistin is currently the last-resort antibiotic for difficult-to-treat bacterial infections. However, colistin resistance genes that can move from bacteria to bacteria have emerged, threatening the safe treatment of many bacterial infections. One of these genes, mcr-9.1, has emerged in South Africa in bacteria that are multidrug resistant, further limiting treatment options for clinicians. In this work, we show that this new gene is disseminating worldwide through Enterobacter and Salmonella species through multiple plasmids. This worrying observation requires urgent action to prevent further escalation of this gene in South Africa and Africa.

17.
Sci Rep ; 10(1): 1232, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988374

RESUMO

Antibiotic-resistant Klebsiella pneumoniae is increasingly being implicated in invasive infections worldwide with high mortalities. Forty-two multidrug resistant (MDR) K. pneumoniae isolates were collected over a 4-month period. Antimicrobial susceptibility was determined using Microscan. The evolutionary epidemiology, resistome, virulome and mobilome of the isolates were characterised using whole-genome sequencing and bioinformatics analysis. All isolates contained the blaCTX-M gene, whilst 41/42(97%) contained blaTEM, 36/42(86%) contained blaOXA and 35/42(83%) harboured blaSHV genes. Other resistance genes found included blaLEN, aac(6')-lb-cr, qnrA, qnrB, qnrS, oqxAB, aad, aph, dfr, sul1, sul2, fosA, and cat genes. Fluoroquinolone and colistin resistance-conferring mutations in parC, gyrAB, pmrAB, phoPQ and kpnEF were identified. The blaLEN gene, rarely described worldwide, was identified in four isolates. The isolates comprised diverse sequence types, the most common being ST152 in 7/42(17%) isolates; clone-specific O and K capsule types were identified. Diverse virulence genes that were not clone-specific were identified in all but one isolate. IncF, IncH and IncI plasmid replicons and two novel integrons were present. The blaCTX-M-15 and blaTEM-1 genes were bracketed by Tn3 transposons, ISEc9, a resolvase and IS91 insertion sequence. There were 20 gene cassettes in 14 different cassette arrays, with the dfrA and aadA gene cassettes being the most frequent. Phylogenetic analysis demonstrated that the isolates were evolutionarily associated with strains from both South Africa and abroad. These findings depict the rich resistome, mobilome and virulome repertoire in clinical K. pneumoniae strains, which are mainly transmitted by clonal, multiclonal and horizontal means in South Africa.


Assuntos
Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Resistência a Múltiplos Medicamentos/genética , Farmacorresistência Bacteriana Múltipla/genética , Evolução Molecular , Genes Bacterianos/genética , Genótipo , Klebsiella pneumoniae/isolamento & purificação , Epidemiologia Molecular/métodos , Pneumonia Bacteriana/epidemiologia , Reação em Cadeia da Polimerase/métodos , África do Sul
18.
19.
Ann N Y Acad Sci ; 1462(1): 92-103, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31549428

RESUMO

Whole-genome sequence analysis was performed on a multidrug-resistant Providencia rettgeri PR002 clinical strain isolated from the urine of a hospitalized patient in Pretoria, South Africa, in 2013. The resistome, mobilome, pathogenicity island(s), as well as virulence and heavy-metal resistance genes of the isolate, were characterized using whole-genome sequencing and bioinformatic analysis. PR002 had a genome assembly size of 4,832,624 bp with a GC content of 40.7%, an A/C2 plasmid replicase gene, four integrons/gene cassettes, 17 resistance genes, and several virulence and heavy metal resistance genes, confirming PR002 as a human pathogen. A novel integron, In1483, harboring the gene blaOXA-2 , was identified, with other uncharacterized class 1 integrons harboring aacA4cr and dfrA1. Aac(3')-IIa and blaSCO-1 , as well as blaPER-7 , sul2, and tet(B), were found bracketed by composite Tn3 transposons, and IS91, IS91, and IS4 family insertion sequences, respectively. PR002 was resistant to all antibiotics tested except amikacin, carbapenems, cefotaxime-clavulanate, ceftazidime-clavulanate, cefoxitin, and fosfomycin. PR002 was closely related to PR1 (USA), PRET_2032 (SPAIN), DSM_1131, and NCTC7477 clinical P. rettgeri strains, but not close enough to suggest it was imported into South Africa from other countries. Multidrug resistance in P. rettgeri is rare, particularly in clinical settings, making this case an important incident requiring urgent attention. This is also the first report of an A/C plasmid in P. rettgeri. The array, multiplicity, and diversity of resistance and virulence genes in this strain are concerning, necessitating stringent infection control, antibiotic stewardship, and periodic resistance surveillance/monitoring policies to preempt further horizontal and vertical spread of these resistance genes.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Integrons/genética , Plasmídeos/genética , Providencia/genética , Replicon/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/genética , Genoma Bacteriano/efeitos dos fármacos , Genômica/métodos , Humanos , Integrons/efeitos dos fármacos , Masculino , Testes de Sensibilidade Microbiana/métodos , Pessoa de Meia-Idade , Filogenia , Providencia/efeitos dos fármacos , Replicon/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA