Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L627-L637, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375577

RESUMO

Pulmonary function testing (PFT) in mice includes biomechanical assessment of lung function relevant to physiology in health and its alteration in disease, hence, it is frequently used in preclinical modeling of human lung pathologies. Despite numerous reports of PFT in mice of various ages, there is a lack of reference data for developing mice collected using consistent methods. Therefore, we profiled PFTs in male and female C57BL/6J mice from 2 to 23 wk of age, providing reference values for age- and sex-dependent changes in mouse lung biomechanics during development and young adulthood. Although males and females have similar weights at birth, females weigh significantly less than males after 5 wk of age (P < 0.001) with largest weight gain observed between 3 and 8 wk in females and 3 and 13 wk in males, after which weight continued to increase more slowly up to 23 wk of age. Lung function parameters including static compliance and inspiratory capacity also increased rapidly between 3 and 8 wk in female and male mice, with male mice having significantly greater static compliance and inspiratory capacity than female mice (P < 0.001). Although these parameters appear higher in males at a given age, allometric scaling showed that static compliance and inspiratory compliance were comparable between the two sexes. This suggests that differences in measurements of lung function are likely body weight-based rather than sex-based. We expect these data to facilitate future lung disease research by filling a critical knowledge gap in our field.NEW & NOTEWORTHY This study provides reference values for changes in mouse lung biomechanics from 2 to 23 wk of age. There are rapid developmental changes in lung structure and function of male and female mice between the ages of 3 and 8 wk. Male mice become noticeably heavier than female mice at or about 5 wk of age. We identified that differences in normal lung function measurements are likely weight-based, not sex-based.


Assuntos
Pulmão , Camundongos Endogâmicos C57BL , Testes de Função Respiratória , Animais , Feminino , Masculino , Pulmão/crescimento & desenvolvimento , Camundongos , Peso Corporal , Caracteres Sexuais , Fatores Sexuais , Envelhecimento/fisiologia
2.
J Biomech Eng ; 146(8)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38421341

RESUMO

Chronic hypoxia plays a central role in diverse pulmonary pathologies, but its effects on longitudinal changes in the biomechanical behavior of proximal pulmonary arteries remain poorly understood. Similarly, effects of normoxic recovery have not been well studied. Here, we report hypoxia-induced changes in composition, vasoactivity, and passive biaxial mechanics in the main branch pulmonary artery of male C57BL/6J mice exposed to 10% FiO2 for 1, 2, or 3 weeks. We observed significant changes in extracellular matrix, and consequently wall mechanics, as early as 1 week of hypoxia. While circumferential stress and stiffness returned toward normal values by 2-3 weeks of hypoxia, area fractions of cytoplasm and thin collagen fibers did not return toward normal until after 1 week of normoxic recovery. By contrast, elastic energy storage and overall distensibility remained reduced after 3 weeks of hypoxia as well as following 1 week of normoxic recovery. While smooth muscle and endothelial cell responses were attenuated under hypoxia, smooth muscle but not endothelial cell responses recovered following 1 week of subsequent normoxia. Collectively, these data suggest that homeostatic processes were unable to preserve or restore overall function, at least over a brief period of normoxic recovery. Longitudinal changes are critical in understanding large pulmonary artery remodeling under hypoxia, and its reversal, and will inform predictive models of vascular adaptation.


Assuntos
Hipóxia , Artéria Pulmonar , Camundongos , Animais , Masculino , Camundongos Endogâmicos C57BL , Hipóxia/patologia , Músculo Liso , Remodelação Vascular
3.
Physiol Rep ; 12(12): e16090, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884325

RESUMO

Adverse effects of large artery stiffening are well established in the systemic circulation; stiffening of the proximal pulmonary artery (PPA) and its sequelae are poorly understood. We combined in vivo (n = 6) with ex vivo data from cadavers (n = 8) and organ donors (n = 13), ages 18 to 89, to assess whether aging of the PPA associates with changes in distensibility, biaxial wall strain, wall thickness, vessel diameter, and wall composition. Aging exhibited significant negative associations with distensibility and cyclic biaxial strain of the PPA (p ≤ 0.05), with decreasing circumferential and axial strains of 20% and 7%, respectively, for every 10 years after 50. Distensibility associated directly with diffusion capacity of the lung (R2 = 0.71, p = 0.03). Axial strain associated with right ventricular ejection fraction (R2 = 0.76, p = 0.02). Aging positively associated with length of the PPA (p = 0.004) and increased luminal caliber (p = 0.05) but showed no significant association with mean wall thickness (1.19 mm, p = 0.61) and no significant differences in the proportions of mural elastin and collagen (p = 0.19) between younger (<50 years) and older (>50) ex vivo samples. We conclude that age-related stiffening of the PPA differs from that of the aorta; microstructural remodeling, rather than changes in overall geometry, may explain age-related stiffening.


Assuntos
Envelhecimento , Artéria Pulmonar , Rigidez Vascular , Humanos , Artéria Pulmonar/fisiologia , Idoso , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Envelhecimento/fisiologia , Idoso de 80 Anos ou mais , Adolescente , Rigidez Vascular/fisiologia , Adulto Jovem , Elastina/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38188724

RESUMO

Prolonged time on mechanical ventilation is associated with multiple consequences for both the patient and medical facility. Based on anecdotal evidence that sustained elevation of beta-natriuretic protein (BNP) during a patient's stay in a long-term acute care hospital (LTACH) was associated with failure to wean from prolonged mechanical ventilation, we investigated if there is an association between a decrease in BNP levels during one's stay and successful weaning from prolonged mechanical ventilation. We performed a retrospective study of 66 patient records revealing no correlation between lowering BNP levels and probability of liberating a patient from prolonged mechanical ventilation in an LTACH environment where the probability of liberation from mechanical ventilation is high (> 85%). BNP measurements by itself does not appear to be a helpful tool in the likelihood of liberation from mechanical ventilation AUC = 0.61 (CI: 0.48-0.72). In an LTACH setting with high success rates of liberation from mechanical ventilation, it does not appear to be necessary to trend BNP measurements in attempts to liberate patients from prolonged mechanical ventilation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA