Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biophys J ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39104120

RESUMO

Despite increased interest in the effect of lingering red blood cells (LRBCs) on the heterogeneous hematocrit distribution in the microcirculation, quantitative data on LRBCs before and after the lingering event are still limited. The aim of the study was to investigate the relation between red blood cell (RBC) lingering and hematocrit partitioning in a microfluidic model of a microvascular bifurcation in the limit of low hematocrit conditions (tube hematocrit <10%). To this end, the classification of LRBCs was performed based on timing, position, and velocity of the RBCs. The investigation provided statistical information on the velocity, shape, and orientation of LRBCs as well as on their lateral distribution in the parent and daughter vessels. LRBCs traveled predominantly close to the centerline of the parent vessel, but they marginated close to the distal wall in the daughter vessels. Differently than the RBC flow observed in the smallest vessels, no influence of lingering events on the local hematocrit partitioning was observed in our experiments. However, importantly, we found that LRBCs flowing in the daughter vessel after lingering may be connected to reverse hematocrit partitioning in downstream bifurcations by influencing the skewness of the hematocrit distribution in the daughter vessel, which relates to the so-called network history effect.

2.
Biomech Model Mechanobiol ; 22(2): 433-451, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36418603

RESUMO

Computational fluid dynamics (CFD) is widely used to predict mechanical hemolysis in medical devices. The most popular hemolysis model is the stress-based power law model that is based on an empirical correlation between hemoglobin release from red blood cells (RBCs) and the magnitude of flow-induced stress and exposure time. Empirical coefficients are traditionally calibrated using data from experiments in simplified Couette-type blood-shearing devices with uniform-shear laminar flow and well-defined exposure times. Use of such idealized coefficients in simulations of real medical devices with complex hemodynamics is thought to be a primary reason for the historical inaccuracy of absolute hemolysis predictions using the power law model. Craven et al. (Biomech Model Mechanobiol 18:1005-1030, 2019) recently developed a CFD-based Kriging surrogate modeling approach for calibrating empirical coefficients in real devices that could potentially be used to more accurately predict absolute hemolysis. In this study, we use the FDA benchmark nozzle to investigate whether utilizing such calibrated coefficients improves the predictive accuracy of the standard Eulerian power law model. We first demonstrate the credibility of our CFD flow simulations by comparing with particle image velocimetry measurements. We then perform hemolysis simulations and compare the results with in vitro experiments. Importantly, the simulations use coefficients calibrated for the flow of a suspension of bovine RBCs through a small capillary tube, which is relatively comparable to the flow of bovine blood through the FDA nozzle. The results show that the CFD predictions of relative hemolysis in the FDA nozzle are reasonably accurate. The absolute predictions are, however, highly inaccurate with modified index of hemolysis values from CFD in error by roughly three orders of magnitude compared with the experiments, despite using calibrated model coefficients from a relatively similar geometry. We rigorously examine the reasons for the inaccuracy that include differences in the flow conditions in the hemolytic regions of each device and the lack of universality of the hemolysis power law model that is entirely empirical. Thus, while the capability to predict relative hemolysis is valuable for product development, further improvements are needed before the power law model can be relied upon to accurately predict the absolute hemolytic potential of a medical device.


Assuntos
Coração Auxiliar , Hemólise , Animais , Bovinos , Simulação por Computador , Hemodinâmica , Reologia , Hidrodinâmica , Estresse Mecânico , Modelos Cardiovasculares
3.
Ann Biomed Eng ; 50(9): 1090-1102, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35639221

RESUMO

Cardiac microvascular obstruction (MVO) associated with acute myocardial infarction (heart attack) is characterized by partial or complete elimination of perfusion in the myocardial microcirculation. A new catheter-based method (CoFI, Controlled Flow Infusion) has recently been developed to diagnose MVO in the catheterization laboratory during acute therapy of the heart attack. A porcine MVO model demonstrates that CoFI can accurately identify the increased hydraulic resistance of the affected microvascular bed. A benchtop microcirculation model was developed and tuned to reproduce in vivo MVO characteristics. The tuned benchtop model was then used to systematically study the effect of different levels of collateral flow. These experiments showed that measurements obtained in the catheter-based method were adversely affected such that collateral flow may be misinterpreted as MVO. Based on further analysis of the measured data, concepts to mitigate the adverse effects were formulated which allow discrimination between collateral flow and MVO.


Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Animais , Catéteres , Circulação Coronária , Microcirculação , Intervenção Coronária Percutânea/efeitos adversos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/etiologia , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Suínos
4.
Front Physiol ; 11: 566273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123027

RESUMO

Our understanding of cerebral blood flow (CBF) regulation during functional activation is still limited. Alongside with the accepted role of smooth muscle cells in controlling the arteriolar diameter, a new hypothesis has been recently formulated suggesting that CBF may be modulated by capillary diameter changes mediated by pericytes. In this study, we developed in vitro microvascular network models featuring a valve enabling the dilation of a specific micro-channel. This allowed us to investigate the non-uniform red blood cell (RBC) partitioning at microvascular bifurcations (phase separation) and the hematocrit distribution at rest and for two scenarios modeling capillary and arteriolar dilation. RBC partitioning showed similar phase separation behavior during baseline and activation. Results indicated that the RBCs at diverging bifurcations generally enter the high-flow branch (classical partitioning). Inverse behavior (reverse partitioning) was observed for skewed hematocrit profiles in the parent vessel of bifurcations, especially for high RBC velocity (i.e., arteriolar activation). Moreover, results revealed that a local capillary dilation, as it may be mediated in vivo by pericytes, led to a localized increase of RBC flow and a heterogeneous hematocrit redistribution within the whole network. In case of a global increase of the blood flow, as it may be achieved by dilating an arteriole, a homogeneous increase of RBC flow was observed in the whole network and the RBCs were concentrated along preferential pathways. In conclusion, overall increase of RBC flow could be obtained by arteriolar and capillary dilation, but only capillary dilation was found to alter the perfusion locally and heterogeneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA