Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Insect Mol Biol ; 32(2): 118-131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366787

RESUMO

Termites (Insecta, Blattodea, Termitoidae) are a widespread and diverse group of eusocial insects known for their ability to digest wood matter. Herein, we report the draft genome of the subterranean termite Reticulitermes lucifugus, an economically important species and among the most studied taxa with respect to eusocial organization and mating system. The final assembly (~813 Mb) covered up to 88% of the estimated genome size and, in agreement with the Asexual Queen Succession Mating System, it was found completely homozygous. We predicted 16,349 highly supported gene models and 42% of repetitive DNA content. Transposable elements of R. lucifugus show similar evolutionary dynamics compared to that of other termites, with two main peaks of activity localized at 25% and 8% of Kimura divergence driven by DNA, LINE and SINE elements. Gene family turnover analyses identified multiple instances of gene duplication associated with R. lucifugus diversification, with significant lineage-specific gene family expansions related to development, perception and nutrient metabolism pathways. Finally, we analysed P450 and odourant receptor gene repertoires in detail, highlighting the large diversity and dynamical evolutionary history of these proteins in the R. lucifugus genome. This newly assembled genome will provide a valuable resource for further understanding the molecular basis of termites biology as well as for pest control.


Assuntos
Baratas , Isópteros , Animais , Isópteros/genética , Madeira , Evolução Biológica , Reprodução
2.
Syst Biol ; 71(6): 1471-1486, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35689634

RESUMO

The concept that complex ancestral traits can never be recovered after their loss is still widely accepted, despite phylogenetic and molecular approaches suggest instances where phenotypes may have been lost throughout the evolutionary history of a clade and subsequently reverted back in derived lineages. One of the first and most notable examples of such a process is wing evolution in phasmids; this polyneopteran order of insects, which comprises stick and leaf insects, has played a central role in initiating a long-standing debate on the topic. In this study, a novel and comprehensive time tree including over 300 Phasmatodea species is used as a framework for investigating wing evolutionary patterns in the clade. Despite accounting for several possible biases and sources of uncertainty, macroevolutionary analyses consistently revealed multiple reversals to winged states taking place after their loss, and reversibility is coupled with higher species diversification rates. Our findings support a loss of or reduction in wings that occurred in the lineage leading to the extant phasmid most recent common ancestor, and brachyptery is inferred to be an unstable state unless co-opted for nonaerodynamic adaptations. We also explored how different assumptions of wing reversals probability could impact their inference: we found that until reversals are assumed to be over 30 times more unlikely than losses, they are consistently inferred despite uncertainty in tree and model parameters. Our findings demonstrate that wing evolution is a reversible and dynamic process in phasmids and contribute to our understanding of complex trait evolution. [Dollo's law; Phasmatodea; phylogenetic comparative methods; polyneoptera; reversals; wing.].


Assuntos
Evolução Biológica , Asas de Animais , Animais , Insetos/genética , Filogenia
3.
Genomics ; 113(6): 4163-4172, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748900

RESUMO

This analysis presents five genome assemblies of four Notostraca taxa. Notostraca origin dates to the Permian/Upper Devonian and the extant forms show a striking morphological similarity to fossil taxa. The comparison of sequenced genomes with other Branchiopoda genomes shows that, despite the morphological stasis, Notostraca share a dynamic genome evolution with high turnover for gene families' expansion/contraction and a transposable elements content comparable to other branchiopods. While Notostraca substitutions rate appears similar or lower in comparison to other branchiopods, a subset of genes shows a faster evolutionary pace, highlighting the difficulty of generalizing about genomic stasis versus dynamism. Moreover, we found that the variation of Triops cancriformis transposable elements content appeared linked to reproductive strategies, in line with theoretical expectations. Overall, besides providing new genomic resources for the study of these organisms, which appear relevant for their ecology and evolution, we also confirmed the decoupling of morphological and molecular evolution.


Assuntos
Crustáceos , Evolução Molecular , Animais , Crustáceos/genética , Genômica , Larva , Filogenia
4.
Mol Phylogenet Evol ; 155: 106983, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33059069

RESUMO

Phasmatodea species diversity lies almost entirely within its suborder Euphasmatodea, which exhibits a pantropical distribution and is considered to derive from a recent and rapid evolutionary radiation. To shed light on Euphasmatodea origins and diversification, we assembled the mitogenomes of 17 species from transcriptomic sequencing data and analysed them along with 22 already available Phasmatodea mitogenomes and 33 mitogenomes representing most of the Polyneoptera lineages. Maximum Likelihood and Bayesian Inference approaches retrieved consistent topologies, both showing the widespread conflict between phylogenetic approaches and traditional systematics. We performed a divergence time analysis leveraging ten fossil specimens representative of most polyneopteran lineages: the time tree obtained supports an older radiation of the clade with respect to previous hypotheses. Euphasmatodea diversification is inferred to have started ~ 187 million years ago, suggesting that the Triassic-Jurassic mass extinction and the breakup of Pangea could have contributed to the process. We also investigated Euphasmatodea mitogenomes patterns of dN, dS and dN/dS ratio throughout our time-tree, trying to characterize the selective regime which may have shaped the clade evolution.


Assuntos
Genoma Mitocondrial , Insetos/classificação , Insetos/genética , Filogenia , Animais , Composição de Bases/genética , Teorema de Bayes , Calibragem , Fósseis , Variação Genética , Funções Verossimilhança , Fatores de Tempo
5.
Int J Mol Sci ; 20(22)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717545

RESUMO

Transposable elements are widely distributed within genomes where they may significantly impact their evolution and cell functions. Short interspersed elements (SINEs) are non-autonomous, fast-evolving elements, but some of them carry a highly conserved domain (HCD), whose sequence remained substantially unchanged throughout the metazoan evolution. SINEs carrying the HCD called V are absent in amniote genomes, but V-like sequences were found within the miniature inverted-repeat transposable element (MITE) MER6 in Homo sapiens. In the present work, the genomic distribution and evolution of MER6 are investigated, in order to reconstruct the origin of human V domain and to envisage its possible functional role. The analysis of 85 tetrapod genomes revealed that MER6 and its variant MER6A are found in primates, while only the MER6A variant was found in bats and eulipotyphlans. These MITEs appeared no longer active, in line with literature data on mammalian DNA transposons. Moreover, they appeared to have originated from a Mariner element found in turtles and from a V-SINE from bony fishes. MER6 insertions were found within genes and conserved in mRNAs: in line with previous hypothesis on functional role of HCDs, the MER6 V domain may be important for cell function also in mammals.


Assuntos
Elementos Nucleotídeos Curtos e Dispersos , Animais , Elementos de DNA Transponíveis , Evolução Molecular , Genoma , Humanos , Mamíferos/genética , Filogenia
6.
BMC Genomics ; 17(1): 997, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27919246

RESUMO

BACKGROUND: Satellite DNA (satDNA) sequences are typically arranged as arrays of tandemly repeated monomers. Due to the similarity among monomers, their organizational pattern and abundance, satDNAs are hardly accessible to structural and functional studies and still represent the most obscure genome component. Although many satDNA arrays of diverse length and even single monomers exist in the genome, surprisingly little is known about transition from satDNAs to other sequences. Studying satDNA monomers at junctions and identifying DNA sequences adjacent to them can help to understand the processes that (re)distribute satDNAs and significance that evolution of these sequence elements might have in creating the genomic landscape. RESULTS: We explored sets of randomly selected satDNA-harboring genomic fragments in four mollusc species to examine satDNA transition sites, and the nature of adjacent sequences. All examined junctions are characterized by abrupt transitions from satDNAs to other sequences. Among them, junctions of only one examined satDNA mapped non-randomly (within the palindrome), indicating that well-defined sequence feature is not a necessary prerequisite in the junction formation. In the studied sample, satDNA flanking sequences can be roughly classified into two groups. The first group is composed of anonymous DNA sequences which occasionally include short segments of transposable elements (TEs) as well as segments of other satDNA sequences. In the second group, satDNA repeats and the array flanking sequences are identified as parts of TEs of the Helitron superfamily. There, some array flanking regions hold fragmented satDNA monomers alternating with anonymous sequences of comparable length as missing monomer parts, suggesting a process of sequence reorganization by a mechanism able to excise short monomer parts and replace them with unrelated sequences. CONCLUSIONS: The observed architecture of satDNA transition sites can be explained as a result of insertion and/or recombination events involving short arrays of satDNA monomers and TEs, in combination with hypothetical transposition-related ability of satDNA monomers to be shuffled independently in the genome. We conclude that satDNAs and TEs can form a complex network of sequences which essentially share the propagation mechanisms and in synergy shape the genome.


Assuntos
Elementos de DNA Transponíveis , DNA Satélite , Genômica , Animais , Bivalves/classificação , Bivalves/genética , Biologia Computacional/métodos , Genoma , Genômica/métodos , Filogenia
7.
Mol Genet Genomics ; 291(3): 1419-29, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26987730

RESUMO

Short interspersed elements (SINEs) are non-autonomous retrotransposons that are widespread in eukaryotic genomes. They exhibit a chimeric sequence structure consisting of a small RNA-related head, an anonymous body and an AT-rich tail. Although their turnover and de novo emergence is rapid, some SINE elements found in distantly related species retain similarity in certain core segments (or highly conserved domains, HCD). We have characterized a new SINE element named RUDI in the bivalve molluscs Ruditapes decussatus and R. philippinarum and found this element to be widely distributed in the genomes of a number of mollusc species. An unexpected structural feature of RUDI is the HCD domain type V, which was first found in non-amniote vertebrate SINEs and in the SINE from one cnidarian species. In addition to the V domain, the overall sequence conservation pattern of RUDI elements resembles that found in ancient AmnSINE (~310 Myr old) and Au SINE (~320 Myr old) families, suggesting that RUDI might be among the most ancient SINE families. Sequence conservation suggests a monophyletic origin of RUDI. Nucleotide variability and phylogenetic analyses suggest long-term vertical inheritance combined with at least one horizontal transfer event as the most parsimonious explanation for the observed taxonomic distribution.


Assuntos
Moluscos/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Elementos Nucleotídeos Curtos e Dispersos , Animais , Sequência de Bases , Sequência Conservada , Evolução Molecular , Genoma , Filogenia
8.
Mol Phylogenet Evol ; 94(Pt B): 778-790, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26541239

RESUMO

Termites of the genus Reticulitermes are ecologically and economically important wood-feeding social insects that are widespread in the Holarctic region. Despite their importance, no study has yet attempted to reconstruct a global time-scaled phylogeny of Reticulitermes termites. In this study, we sequenced mitochondrial (2096bp) and nuclear (829bp) loci from 61 Reticulitermes specimens, collected across the genus' entire range, and one specimen of Coptotermes formosanus, which served as an outgroup. Bayesian and Maximum likelihood analyses conducted on the mitochondrial and nuclear sequences support the existence of four main lineages that span four global geographical regions: North America (NA lineage), western Europe (WE lineage), a region including eastern Europe and western Asia (EA+WA lineage), and eastern Asia (EA lineage). The mitochondrial data allowed us to clarify the phylogenetic relationships among these lineages. They were also used to infer a chronogram that was time scaled based on age estimates for termite fossils (including the oldest Reticulitermes fossils, which date back to the late Eocene-early Oligocene). Our results support the hypothesis that the extant Reticulitermes lineage first differentiated in North America. The first divergence event in the ancestral lineage of Reticulitermes occurred in the early Miocene and separated the Nearctic lineages (i.e., the NA lineages) from the Palearctic lineages (i.e., WE, EE+WA, and EA lineages). Our analyses revealed that the main lineages of Reticulitermes diversified because of vicariance and migration events, which were probably induced by major paleogeographic and paleoclimatic changes that occurred during the Cenozoic era. This is the first global and comprehensive phylogenetic study of Reticulitermes termites, and it provides a crucial foundation for studying the evolution of phenotypic and life-history traits in Reticulitermes. For instance, the phylogeny we obtained suggested that 'asexual queen succession', a unique reproductive system, independently evolved at least three times during the diversification of the genus.


Assuntos
Isópteros/classificação , Animais , Evolução Biológica , Núcleo Celular , DNA Mitocondrial , Genes de Insetos , Especiação Genética , Isópteros/genética , Filogenia , Filogeografia
9.
Genomics ; 102(4): 296-300, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23981965

RESUMO

Eukaryotic genomes harbour a number of mobile genetic elements (MGEs); moving from one genomic location to another, they are known to impact on the host genome. Short interspersed elements (SINEs) are well-represented, non-autonomous retroelements and they are likely the most diversified MGEs. In some instances, sequence domains conserved across unrelated SINEs have been identified; remarkably, one of these, called Nin, has been conserved since the Radiata-Bilateria splitting. Here we report on two new domains: Inv, derived from Nin, identified in insects and in deuterostomes, and Pln, restricted to polyneopteran insects. The identification of Inv and Pln sequences allowed us to retrieve new SINEs, two in insects and one in a hemichordate. The diverse structural combination of the different domains in different SINE families, during metazoan evolution, offers a clearer view of SINE diversity and their frequent de novo emergence through module exchange, possibly underlying the high evolutionary success of SINEs.


Assuntos
Sequência Conservada , Evolução Molecular , Insetos/genética , Invertebrados/genética , Elementos Nucleotídeos Curtos e Dispersos , Strongylocentrotus purpuratus/genética , Animais , Sequência de Bases , Evolução Biológica , Biologia Computacional , Bases de Dados Genéticas , Genoma , Humanos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
10.
Genome Biol Evol ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573594

RESUMO

After the loss of a trait, theory predicts that the molecular machinery underlying its phenotypic expression should decay. Yet, empirical evidence is contrasting. Here, we test the hypotheses that (i) the molecular ground plan of a lost trait could persist due to pleiotropic effects on other traits and (ii) that gene co-expression network architecture could constrain individual gene expression. Our testing ground has been the Bacillus stick insect species complex, which contains close relatives that are either bisexual or parthenogenetic. After the identification of genes expressed in male reproductive tissues in a bisexual species, we investigated their gene co-expression network structure in two parthenogenetic species. We found that gene co-expression within the male gonads was partially preserved in parthenogens. Furthermore, parthenogens did not show relaxed selection on genes upregulated in male gonads in the bisexual species. As these genes were mostly expressed in female gonads, this preservation could be driven by pleiotropic interactions and an ongoing role in female reproduction. Connectivity within the network also played a key role, with highly connected-and more pleiotropic-genes within male gonad also having a gonad-biased expression in parthenogens. Our findings provide novel insight into the mechanisms which could underlie the production of rare males in parthenogenetic lineages; more generally, they provide an example of the cryptic persistence of a lost trait molecular architecture, driven by gene pleiotropy on other traits and within their co-expression network.


Assuntos
Insetos , Partenogênese , Animais , Masculino , Insetos/genética , Feminino , Redes Reguladoras de Genes , Reprodução/genética , Gônadas/metabolismo
11.
Evolution ; 78(6): 1109-1120, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38501929

RESUMO

Reproduction is a key feature of all organisms, yet the way in which it is achieved varies greatly across the tree of life. One striking example of this variation is the stick insect genus Bacillus, in which five different reproductive modes have been described: sex, facultative and obligate parthenogenesis, and two highly unusual reproductive modes: hybridogenesis and androgenesis. Under hybridogenesis, the entire genome from the paternal species is eliminated and replaced each generation by mating with the corresponding species. Under androgenesis, an egg is fertilized, but the developing diploid offspring bear two paternal genomes and no maternal genome, as a consequence of unknown mechanisms. Here, we reevaluate the previous descriptions of Bacillus lineages and the proposed F1 hybrid ancestries of the hybridogenetic and obligately parthenogenetic lineages (based on allozymes and karyotypes) from Sicily, where all these reproductive modes are found. We generate a chromosome-level genome assembly for a facultative parthenogenetic species (B. rossius) and combine extensive field sampling with RADseq and mtDNA data. We identify and genetically corroborate all previously described species and confirm the ancestry of hybrid lineages. All hybrid lineages have fully retained their F1 hybrid constitution throughout the genome, indicating that the elimination of the paternal genome in hybridogens is always complete and that obligate parthenogenesis in Bacillus hybrid species is not associated with an erosion of heterozygosity as known in other hybrid asexuals. Our results provide a stepping stone toward understanding the transitions between reproductive modes and the proximate mechanisms of genome elimination.


Assuntos
Partenogênese , Animais , Masculino , Insetos/genética , Feminino , Evolução Biológica , Genoma de Inseto , Reprodução , Hibridização Genética , DNA Mitocondrial/genética
12.
Genome ; 56(12): 729-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24433208

RESUMO

The repetitive DNA content of the stick insect species Bacillus rossius (facultative parthenogenetic), Bacillus grandii (gonochoric), and Bacillus atticus (obligate parthenogenetic) was analyzed through the survey of random genomic libraries roughly corresponding to 0.006% of the genome. By repeat masking, 19 families of transposable elements were identified (two LTR and six non-LTR retrotransposons; 11 DNA transposons). Moreover, a de novo analysis revealed, among the three libraries, the first MITE family observed in polyneopteran genomes. On the whole, transposable element abundance represented 23.3% of the genome in B. rossius, 22.9% in B. atticus, and 18% in B. grandii. Tandem repeat content in the three libraries is much lower: 1.32%, 0.64%, and 1.86% in B. rossius, B. grandii, and B. atticus, respectively. Microsatellites are the most abundant in all species. Minisatellites were only found in B. rossius and B. atticus, and five monomers belonging to the Bag320 satellite family were detected in B. atticus. Assuming the survey provides adequate representation of the relative genome, the obligate parthenogenetic species (B. atticus), compared with the other two species analyzed, does not show a lower transposable element content, as expected from some theoretical and empirical studies.


Assuntos
DNA/genética , Genoma de Inseto , Insetos/classificação , Insetos/genética , Sequências Repetitivas de Ácido Nucleico , Animais , Sequência de Bases , Elementos de DNA Transponíveis , Feminino , Biblioteca Gênica , Repetições Minissatélites , Partenogênese/genética , Filogenia
13.
Genomics ; 100(1): 51-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22564473

RESUMO

The 28S rRNA genes of several metazoans are interrupted by site-specific targeting non-LTR retrotransposons, such as R2. R2 elements have been deeply analyzed but aspects of their retrotransposition mechanism and the origin of the wide diversity observed are still debated. We characterized six new R2 lineages in four tadpole shrimp species (Notostraca), samples deriving from a parthenogenetic population of Triops cancriformis (R2Tc_it) and from bisexual Lepidurus populations of L. lubbocki (R2Ll), L. couesii (R2LcA, R2LcB, R2LcC) and L. arcticus (R2La). All elements fit the canonical R2 structure but R2Ll which turned out to be a chimera with an additional ORF originating from another R2. Consistently with data on LINEs, R2Ll could be the result of recombination due to reverse transcriptase template jump. The analysis of 28S/R2 5' end junctions further suggests aberrant homologous recombination, as observed in RNA viruses.


Assuntos
Crustáceos/genética , DNA Ribossômico/genética , Fósseis , Mutagênese Insercional , RNA Ribossômico 28S/genética , Retroelementos , Sequências Repetidas Terminais/genética , Animais , Sequência de Bases , Crustáceos/classificação , Evolução Molecular , Genes de RNAr , Dados de Sequência Molecular , Filogenia , Recombinação Genética/genética
14.
J Econ Entomol ; 106(5): 2216-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24224267

RESUMO

Invasive species cause severe environmental and economic problems. The invasive success of social insects often appears to be related to their ability to adjust their social organization to new environments. To gain a better understanding of the biology of invasive termites, this study investigated the social organization of the subterranean termite, Reticulitermes urbis, analyzing the breeding structure and the number of reproductives within colonies from three introduced populations. By using eight microsatellite loci to determine the genetic structure, it was found that all the colonies from the three populations were headed by both primary reproductives (kings and queens) and secondary reproductives (neotenics) to form extended-family colonies. R. urbis appears to be the only Reticulitermes species with a social organization based solely on extended-families in both native and introduced populations, suggesting that there is no change in their social organization on introduction. F-statistics indicated that there were few neotenics within the colonies from urban areas, which did not agree with results from previous studies and field observations. This suggests that although several neotenics may be produced, only few become active reproductives. The results also imply that the invasive success of R. urbis may be based on different reproductive strategies in urban and semiurbanized areas. The factors influencing an individual to differentiate into a neotenic in Reticulitermes species are discussed.


Assuntos
Isópteros/genética , Repetições de Microssatélites , Animais , Feminino , França , Genótipo , Espécies Introduzidas , Isópteros/fisiologia , Itália , Masculino , Reação em Cadeia da Polimerase , Dinâmica Populacional , Reprodução
15.
Sci Rep ; 12(1): 4931, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322086

RESUMO

The class Branchiopoda, whose origin dates back to Cambrian, includes ~ 1200 species which mainly occupy freshwater habitats. The phylogeny and systematics of the class have been debated for long time, until recent phylogenomic analyses allowed to better clarify the relationships among major clades. Based on these data, the clade Anostraca (fairy and brine shrimps) is sister to all other branchiopods, and the Notostraca (tadpole shrimps) results as sister group to Diplostraca, which includes Laevicaudata + Spinicaudata (clam shrimps) and Cladoceromorpha (water fleas + Cyclestherida). In the present analysis, thanks to an increased taxon sampling, a complex picture emerges. Most of the analyzed mitogenomes show the Pancrustacea gene order while in several other taxa they are found rearranged. These rearrangements, though, occur unevenly among taxa, most of them being found in Cladocera, and their taxonomic distribution does not agree with the phylogeny. Our data also seems to suggest the possibility of potentially homoplastic, alternative gene order within Daphniidae.


Assuntos
Cladocera , Genoma Mitocondrial , Animais , Cladocera/genética , Crustáceos , Ordem dos Genes , Rearranjo Gênico , Filogenia
16.
Zoological Lett ; 8(1): 14, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435814

RESUMO

The evolution of automixis - i.e., meiotic parthenogenesis - requires several features, including ploidy restoration after meiosis and maintenance of fertility. Characterizing the relative contribution of novel versus pre-existing genes and the similarities in their expression and sequence evolution is fundamental to understand the evolution of reproductive novelties. Here we identify gonads-biased genes in two Bacillus automictic stick-insects and compare their expression profile and sequence evolution with a bisexual congeneric species. The two parthenogens restore ploidy through different cytological mechanisms: in Bacillus atticus, nuclei derived from the first meiotic division fuse to restore a diploid egg nucleus, while in Bacillus rossius, diploidization occurs in some cells of the haploid blastula through anaphase restitution. Parthenogens' gonads transcriptional program is found to be largely assembled from genes that were already present before the establishment of automixis. The three species transcriptional profiles largely reflect their phyletic relationships, yet we identify a shared core of genes with gonad-biased patterns of expression in parthenogens which are either male gonads-biased in the sexual species or are not differentially expressed there. At the sequence level, just a handful of gonads-biased genes were inferred to have undergone instances of positive selection exclusively in the parthenogen species. This work is the first to explore the molecular underpinnings of automixis in a comparative framework: it delineates how reproductive novelties can be sustained by genes whose origin precedes the establishment of the novelty itself and shows that different meiotic mechanisms of reproduction can be associated with a shared molecular ground plan.

17.
J Mol Evol ; 72(3): 296-305, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21259002

RESUMO

The full-length element of the non-LTR retrotransposon R2 is here characterized in three European isopteran species: the more primitive Kalotermes flavicollis (Kalotermitidae), including two highly divergent mitochondrial lineages, and the more derived Reticulitermes lucifugus and R. urbis (Rhinotermitidae). Partial 3' sequences for R. grassei and R. balkanensis were also analyzed. The essential structural features of R2 elements are conserved in termites. Phylogenetic analysis revealed that termite elements belong to the same clade and that their phylogeny is fully compatible with the phylogeny of their host species. The study of the number and the frequency of R2 insertion variants in four R. urbis colonies suggests a greatly reduced, or completely absent, recent element activity.


Assuntos
Isópteros/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , Animais , Evolução Molecular , Dados de Sequência Molecular , Filogenia
18.
Mol Genet Genomics ; 285(2): 175-84, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21184097

RESUMO

Short INterspersed Elements (SINEs) in invertebrates, and especially in animal inbred genomes such that of termites, are poorly known; in this paper we characterize three new SINE families (Talub, Taluc and Talud) through the analyses of 341 sequences, either isolated from the Reticulitermes lucifugus genome or drawn from EST Genbank collection. We further add new data to the only isopteran element known so far, Talua. These SINEs are tRNA-derived elements, with an average length ranging from 258 to 372 bp. The tails are made up by poly(A) or microsatellite motifs. Their copy number varies from 7.9 × 10(3) to 10(5) copies, well within the range observed for other metazoan genomes. Species distribution, age and target site duplication analysis indicate Talud as the oldest, possibly inactive SINE originated before the onset of Isoptera (~150 Myr ago). Taluc underwent to substantial sequence changes throughout the evolution of termites and data suggest it was silenced and then re-activated in the R. lucifugus lineage. Moreover, Taluc shares a conserved sequence block with other unrelated SINEs, as observed for some vertebrate and cephalopod elements. The study of genomic environment showed that insertions are mainly surrounded by microsatellites and other SINEs, indicating a biased accumulation within non-coding regions. The evolutionary dynamics of Talu~ elements is explained through selective mechanisms acting in an inbred genome; in this respect, the study of termites' SINEs activity may provide an interesting framework to address the (co)evolution of mobile elements and the host genome.


Assuntos
Evolução Molecular , Genoma de Inseto , Isópteros/genética , Elementos Nucleotídeos Curtos e Dispersos , Animais , Sequência Conservada , Isópteros/química , Conformação de Ácido Nucleico , Filogenia , Alinhamento de Sequência
19.
Sci Rep ; 11(1): 20744, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671077

RESUMO

Atlantic bluefin tuna (Thunnus thynnus; BFT) abundance was depleted in the late 20th and early 21st century due to overfishing. Historical catch records further indicate that the abundance of BFT in the Mediterranean has been fluctuating since at least the 16th century. Here we build upon previous work on ancient DNA of BFT in the Mediterranean by comparing contemporary (2009-2012) specimens with archival (1911-1926) and archaeological (2nd century BCE-15th century CE) specimens that represent population states prior to these two major periods of exploitation, respectively. We successfully genotyped and analysed 259 contemporary and 123 historical (91 archival and 32 archaeological) specimens at 92 SNP loci that were selected for their ability to differentiate contemporary populations or their association with core biological functions. We found no evidence of genetic bottlenecks, inbreeding or population restructuring between temporal sample groups that might explain what has driven catch fluctuations since the 16th century. We also detected a putative adaptive response, involving the cytoskeletal protein synemin which may be related to muscle stress. However, these results require further investigation with more extensive genome-wide data to rule out demographic changes due to overfishing, and other natural and anthropogenic factors, in addition to elucidating the adaptive drivers related to these.


Assuntos
DNA Antigo/química , Variação Genética/genética , Atum/genética , Animais , Efeitos Antropogênicos , Conservação dos Recursos Naturais/métodos , Genótipo , Mar Mediterrâneo
20.
Mol Phylogenet Evol ; 56(3): 1051-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20433930

RESUMO

Owing to its peculiar paleogeographic history, Crete island is one of the most interesting biodiversity hotspots within the Aegean area. We here analyze the lineage diversity of Cretan Reticulitermes termites obtained on mitochondrial genes (COII and 16S) and nuclear Inter-SINE loci. The evolutionary pattern here detected shows a high correlation between clade divergence and geological events of the specific geographical area. The new haplotypes identified in Crete converge with those of specimens collected in northern Turkey, Thrace and Macedonia/Calcydia: this allows to suggest a unique genetic lineage for the Aegean area. A taxonomic and phylogenetic re-analysis of the Reticulitermes genus in Mediterranean Europe agrees with the species rank suggested for Reticulitermes balkanensis and Reticulitermes urbis, as well as for Reticulitermes banyulensis and Reticulitermes grassei from France and the Iberian peninsula. A level of divergence compatible with a specific rank of differentiation is scored also among the three Reticulitermes lucifugus subspecies from Italy and Corse, with the Sardo-Corsican entity basal to the other taxa. In the eastern area, the "Aegean" entity, including the Cretan lineages, results the most apical clade while R. urbis, distributed along the East Adriatic shores and Peloponnesus, lays as the most basal one.


Assuntos
Evolução Molecular , Isópteros/genética , Filogenia , Animais , DNA Mitocondrial/genética , Grécia , Haplótipos , Isópteros/classificação , Funções Verossimilhança , Região do Mediterrâneo , Modelos Genéticos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA