Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(8): e2202388120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780524

RESUMO

Climate change is radically altering coral reef ecosystems, mainly through increasingly frequent and severe bleaching events. Yet, some reefs have exhibited higher thermal tolerance after bleaching severely the first time. To understand changes in thermal tolerance in the eastern tropical Pacific (ETP), we compiled four decades of temperature, coral cover, coral bleaching, and mortality data, including three mass bleaching events during the 1982 to 1983, 1997 to 1998 and 2015 to 2016 El Niño heatwaves. Higher heat resistance in later bleaching events was detected in the dominant framework-building genus, Pocillopora, while other coral taxa exhibited similar susceptibility across events. Genetic analyses of Pocillopora spp. colonies and their algal symbionts (2014 to 2016) revealed that one of two Pocillopora lineages present in the region (Pocillopora "type 1") increased its association with thermotolerant algal symbionts (Durusdinium glynnii) during the 2015 to 2016 heat stress event. This lineage experienced lower bleaching and mortality compared with Pocillopora "type 3", which did not acquire D. glynnii. Under projected thermal stress, ETP reefs may be able to preserve high coral cover through the 2060s or later, mainly composed of Pocillopora colonies that associate with D. glynnii. However, although the low-diversity, high-cover reefs of the ETP could illustrate a potential functional state for some future reefs, this state may only be temporary unless global greenhouse gas emissions and resultant global warming are curtailed.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Resposta ao Choque Térmico , Oceanos e Mares
2.
Ecol Appl ; 34(4): e2961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522943

RESUMO

Ecological forecasts are becoming increasingly valuable tools for conservation and management. However, there are few examples of near-real-time forecasting systems that account for the wide range of ecological complexities. We developed a new coral disease ecological forecasting system that explores a suite of ecological relationships and their uncertainty and investigates how forecast skill changes with shorter lead times. The Multi-Factor Coral Disease Risk product introduced here uses a combination of ecological and marine environmental conditions to predict the risk of white syndromes and growth anomalies across reefs in the central and western Pacific and along the east coast of Australia and is available through the US National Oceanic and Atmospheric Administration Coral Reef Watch program. This product produces weekly forecasts for a moving window of 6 months at a resolution of ~5 km based on quantile regression forests. The forecasts show superior skill at predicting disease risk on withheld survey data from 2012 to 2020 compared with predecessor forecast systems, with the biggest improvements shown for predicting disease risk at mid- to high-disease levels. Most of the prediction uncertainty arises from model uncertainty, so prediction accuracy and precision do not improve substantially with shorter lead times. This result arises because many predictor variables cannot be accurately forecasted, which is a common challenge across ecosystems. Weekly forecasts and scenarios can be explored through an online decision support tool and data explorer, co-developed with end-user groups to improve use and understanding of ecological forecasts. The models provide near-real-time disease risk assessments and allow users to refine predictions and assess intervention scenarios. This work advances the field of ecological forecasting with real-world complexities and, in doing so, better supports near-term decision making for coral reef ecosystem managers and stakeholders. Secondarily, we identify clear needs and provide recommendations to further enhance our ability to forecast coral disease risk.


Assuntos
Antozoários , Recifes de Corais , Animais , Medição de Risco/métodos , Previsões , Conservação dos Recursos Naturais/métodos , Austrália , Monitoramento Ambiental/métodos , Modelos Biológicos
3.
Nature ; 558(7710): 396-400, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29904103

RESUMO

Sea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100. Coral cover strongly predicts reef capacity to track SLR, but threshold cover levels that will be necessary to prevent submergence are well above those observed on most reefs. Urgent action is thus needed to mitigate climate, sea-level and future ecological changes in order to limit the magnitude of future reef submergence.


Assuntos
Antozoários/crescimento & desenvolvimento , Mudança Climática/estatística & dados numéricos , Recifes de Corais , Água do Mar/análise , Animais , Antozoários/metabolismo , Oceano Atlântico , Carbonatos/metabolismo , Oceano Índico , Modelos Teóricos , Oceanos e Mares
4.
Glob Chang Biol ; 29(23): 6591-6605, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846617

RESUMO

Orbicella faveolata, commonly known as the mountainous star coral, is a dominant reef-building species in the Caribbean, but populations have suffered sharp declines since the 1980s due to repeated bleaching and disease-driven mortality. Prior research has shown that inshore adult O. faveolata populations in the Florida Keys are able to maintain high coral cover and recover from bleaching faster than their offshore counterparts. However, whether this origin-specific variation in thermal resistance is heritable remains unclear. To address this knowledge gap, we produced purebred and hybrid larval crosses from O. faveolata gametes collected at two distinct reefs in the Upper Florida Keys, a nearshore site (Cheeca Rocks, CR) and an offshore site (Horseshoe Reef, HR), in two different years (2019, 2021). We then subjected these aposymbiotic larvae to severe (36°C) and moderate (32°C) heat challenges to quantify their thermal tolerance. Contrary to our expectation based on patterns of adult thermal tolerance, HR purebred larvae survived better and exhibited gene expression profiles that were less driven by stress response under elevated temperature compared to purebred CR and hybrid larvae. One potential explanation could be the compromised reproductive output of CR adult colonies due to repeated summer bleaching events in 2018 and 2019, as gametes originating from CR in 2019 contained less storage lipids than those from HR. These findings provide an important counter-example to the current selective breeding paradigm, that more tolerant parents will yield more tolerant offspring, and highlight the importance of adopting a holistic approach when evaluating larval quality for conservation and restoration purposes.


Assuntos
Antozoários , Recifes de Corais , Humanos , Animais , Antozoários/fisiologia , Temperatura Alta , Florida
5.
Glob Chang Biol ; 28(23): 7126-7138, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36129389

RESUMO

Ocean acidification (OA) is expected to modify the structure and function of coral reef ecosystems by reducing calcification, increasing bioerosion, and altering the physiology of many marine organisms. Much of our understanding of these relationships is based on experiments with static OA treatments, although evidence suggests that the magnitude of diurnal fluctuations in carbonate chemistry may modulate the calcification response to OA. These light-mediated swings in seawater pH are projected to become more extreme with OA, yet their impact on bioerosion remains unknown. We evaluated the influence of diurnal carbonate chemistry variability on the bioerosion rates of two Caribbean sponges: the zooxanthellate Cliona varians and azooxanthellate Cliothosa delitrix. Replicate fragments from multiple colonies of each species were exposed to four precisely controlled pH treatments: contemporary static (8.05 ± 0.00; mean pH ± diurnal pH oscillation), contemporary variable (8.05 ± 0.10), future OA static (7.80 ± 0.00), and future OA variable (7.80 ± 0.10). Significantly enhanced bioerosion rates, determined using buoyant weight measurements, were observed under more variable conditions in both the contemporary and future OA scenarios for C. varians, whereas the same effect was only apparent under contemporary pH conditions for C. delitrix. These results indicate that variable carbonate chemistry has a stimulating influence on sponge bioerosion, and we hypothesize that bioerosion rates evolve non-linearly as a function of pCO2 resulting in different magnitudes and directions of rate enhancement/reduction between day and night, even with an equal fluctuation around the mean. This response appeared to be intensified by photosymbionts, evident by the consistently higher percent increase in bioerosion rates for photosynthetic C. varians across all treatments. These findings further suggest that more variable natural ecosystems may presently experience elevated sponge bioerosion rates and that the heightened impact of OA enhanced bioerosion on reef habitat could occur sooner than prior predictions.


Assuntos
Antozoários , Ecossistema , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Recifes de Corais , Carbonatos , Região do Caribe , Oceanos e Mares , Antozoários/fisiologia
6.
Glob Chang Biol ; 28(14): 4229-4250, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35475552

RESUMO

The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.


Assuntos
Antozoários , Mudança Climática , Animais , Antozoários/fisiologia , Recifes de Corais , Ecossistema
7.
Glob Chang Biol ; 25(3): 1016-1031, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552831

RESUMO

Identifying which factors lead to coral bleaching resistance is a priority given the global decline of coral reefs with ocean warming. During the second year of back-to-back bleaching events in the Florida Keys in 2014 and 2015, we characterized key environmental and biological factors associated with bleaching resilience in the threatened reef-building coral Orbicella faveolata. Ten reefs (five inshore, five offshore, 179 corals total) were sampled during bleaching (September 2015) and recovery (May 2016). Corals were genotyped with 2bRAD and profiled for algal symbiont abundance and type. O. faveolata at the inshore sites, despite higher temperatures, demonstrated significantly higher bleaching resistance and better recovery compared to offshore. The thermotolerant Durusdinium trenchii (formerly Symbiondinium trenchii) was the dominant endosymbiont type region-wide during initial (78.0% of corals sampled) and final (77.2%) sampling; >90% of the nonbleached corals were dominated by D. trenchii. 2bRAD host genotyping found no genetic structure among reefs, but inshore sites showed a high level of clonality. While none of the measured environmental parameters were correlated with bleaching, 71% of variation in bleaching resistance and 73% of variation in the proportion of D. trenchii was attributable to differences between genets, highlighting the leading role of genetics in shaping natural bleaching patterns. Notably, D. trenchii was rarely dominant in O. faveolata from the Florida Keys in previous studies, even during bleaching. The region-wide high abundance of D. trenchii was likely driven by repeated bleaching associated with the two warmest years on record for the Florida Keys (2014 and 2015). On inshore reefs in the Upper Florida Keys, O. faveolata was most abundant, had the highest bleaching resistance, and contained the most corals dominated by D. trenchii, illustrating a causal link between heat tolerance and ecosystem resilience with global change.


Assuntos
Alveolados/fisiologia , Antozoários/fisiologia , Antozoários/parasitologia , Temperatura Alta , Simbiose , Termotolerância/fisiologia , Alveolados/genética , Animais , Antozoários/genética , Recifes de Corais , Florida , Variação Genética , Oceanos e Mares , Termotolerância/genética
8.
Biol Lett ; 15(12): 20190414, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31822243

RESUMO

Anthropogenic activities are increasing ocean temperature and decreasing ocean pH. Some coastal habitats are experiencing increases in organic runoff, which when coupled with a loss of vegetated coastline can accelerate reductions in seawater pH. Marine larvae that hatch in coastal habitats may not have the ability to respond to elevated temperature and changes in seawater pH. This study examined the response of Florida stone crab (Menippe mercenaria) larvae to elevated temperature (30°C control and 32°C treatment) and CO2-induced reductions in pH (8.05 pH control and 7.80 pH treatment). We determined whether those singular and simultaneous stressors affect larval vertical movement at two developmental stages. Geotactic responses varied between larval stages. The direction and rate of the vertical displacement of larvae were dependent on pH rather than temperature. Stage III larvae swam upwards under ambient pH conditions, but swam downwards at a faster rate under reduced pH. There was no observable change in the directional movement of Stage V larvae. The reversal in orientation by Stage III larvae may limit larval transport in habitats that experience reduced pH and could pose challenges for the northward dispersal of stone crabs as coastal temperatures warm.


Assuntos
Braquiúros , Animais , Dióxido de Carbono , Florida , Concentração de Íons de Hidrogênio , Larva , Água do Mar , Temperatura
9.
Proc Biol Sci ; 283(1831)2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27194698

RESUMO

Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50-100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats.


Assuntos
Antozoários/fisiologia , Ecossistema , Aclimatação , Animais , Região do Caribe , Concentração de Íons de Hidrogênio , Especificidade da Espécie , Temperatura , Índias Ocidentais
10.
Proc Biol Sci ; 283(1842)2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852802

RESUMO

Ocean acidification (OA) impacts the physiology of diverse marine taxa; among them corals that create complex reef framework structures. Biological processes operating on coral reef frameworks remain largely unknown from naturally high-carbon-dioxide (CO2) ecosystems. For the first time, we independently quantified the response of multiple functional groups instrumental in the construction and erosion of these frameworks (accretion, macroboring, microboring, and grazing) along natural OA gradients. We deployed blocks of dead coral skeleton for roughly 2 years at two reefs in Papua New Guinea, each experiencing volcanically enriched CO2, and employed high-resolution micro-computed tomography (micro-CT) to create three-dimensional models of changing skeletal structure. OA conditions were correlated with decreased calcification and increased macroboring, primarily by annelids, representing a group of bioeroders not previously known to respond to OA. Incubation of these blocks, using the alkalinity anomaly methodology, revealed a switch from net calcification to net dissolution at a pH of roughly 7.8, within Intergovernmental Panel on Climate Change's (IPCC) predictions for global ocean waters by the end of the century. Together these data represent the first comprehensive experimental study of bioerosion and calcification from a naturally high-CO2 reef ecosystem, where the processes of accelerated erosion and depressed calcification have combined to alter the permanence of this essential framework habitat.


Assuntos
Calcificação Fisiológica , Dióxido de Carbono/química , Recifes de Corais , Água do Mar/química , Animais , Antozoários/fisiologia , Mudança Climática , Concentração de Íons de Hidrogênio , Papua Nova Guiné , Solubilidade , Microtomografia por Raio-X
11.
Proc Natl Acad Sci U S A ; 110(18): 7366-70, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589887

RESUMO

Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 µatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 µatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 µatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing.


Assuntos
Ácidos/metabolismo , Peixes/fisiologia , Oceanos e Mares , Membrana dos Otólitos/fisiologia , Sensação/fisiologia , Clima Tropical , Animais , Dióxido de Carbono/metabolismo , Simulação por Computador , Cabeça/diagnóstico por imagem , Audição/fisiologia , Larva/fisiologia , Especificidade da Espécie , Água/química , Microtomografia por Raio-X
12.
Glob Chang Biol ; 20(1): 103-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24151155

RESUMO

Coral reefs and the services they provide are seriously threatened by ocean acidification and climate change impacts like coral bleaching. Here, we present updated global projections for these key threats to coral reefs based on ensembles of IPCC AR5 climate models using the new Representative Concentration Pathway (RCP) experiments. For all tropical reef locations, we project absolute and percentage changes in aragonite saturation state (Ωarag) for the period between 2006 and the onset of annual severe bleaching (thermal stress >8 degree heating weeks); a point at which it is difficult to believe reefs can persist as we know them. Severe annual bleaching is projected to start 10-15 years later at high-latitude reefs than for reefs in low latitudes under RCP8.5. In these 10-15 years, Ωarag keeps declining and thus any benefits for high-latitude reefs of later onset of annual bleaching may be negated by the effects of acidification. There are no long-term refugia from the effects of both acidification and bleaching. Of all reef locations, 90% are projected to experience severe bleaching annually by 2055. Furthermore, 5% declines in calcification are projected for all reef locations by 2034 under RCP8.5, assuming a 15% decline in calcification per unit of Ωarag. Drastic emissions cuts, such as those represented by RCP6.0, result in an average year for the onset of annual severe bleaching that is ~20 years later (2062 vs. 2044). However, global emissions are tracking above the current worst-case scenario devised by the scientific community, as has happened in previous generations of emission scenarios. The projections here for conditions on coral reefs are dire, but provide the most up-to-date assessment of what the changing climate and ocean acidification mean for the persistence of coral reefs.


Assuntos
Recifes de Corais , Modelos Teóricos , Animais , Mudança Climática , Concentração de Íons de Hidrogênio , Água do Mar , Temperatura
13.
Sci Rep ; 13(1): 258, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604530

RESUMO

For reef framework to persist, calcium carbonate production by corals and other calcifiers needs to outpace loss due to physical, chemical, and biological erosion. This balance is both delicate and dynamic and is currently threatened by the effects of ocean warming and acidification. Although the protection and recovery of ecosystem functions are at the center of most restoration and conservation programs, decision makers are limited by the lack of predictive tools to forecast habitat persistence under different emission scenarios. To address this, we developed a modelling approach, based on carbonate budgets, that ties species-specific responses to site-specific global change using the latest generation of climate models projections (CMIP6). We applied this model to Cheeca Rocks, an outlier in the Florida Keys in terms of high coral cover, and explored the outcomes of restoration targets scheduled in the coming 20 years at this site by the Mission: Iconic Reefs restoration initiative. Additionally, we examined the potential effects of coral thermal adaptation by increasing the bleaching threshold by 0.25, 0.5, 1 and 2˚C. Regardless of coral adaptative capacity or restoration, net carbonate production at Cheeca Rocks declines heavily once the threshold for the onset of annual severe bleaching is reached. The switch from net accretion to net erosion, however, is significantly delayed by mitigation and adaptation. The maintenance of framework accretion until 2100 and beyond is possible under a decreased emission scenario coupled with thermal adaptation above 0.5˚C. Although restoration initiatives increase reef accretion estimates, Cheeca Rocks will only be able to keep pace with future sea-level rise in a world where anthropogenic CO2 emissions are reduced. Present results, however, attest to the potential of restoration interventions combined with increases in coral thermal tolerance to delay the onset of mass bleaching mortalities, possibly in time for a low-carbon economy to be implemented and complementary mitigation measures to become effective.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Ecossistema , Florida , Carbonatos , Mudança Climática
14.
Sci Rep ; 13(1): 6759, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185619

RESUMO

Coral cover has declined worldwide due to anthropogenic stressors that manifest on both global and local scales. Coral communities that exist in extreme conditions can provide information on how these stressors influence ecosystem structure, with implications for their persistence under future conditions. The Port of Miami is located within an urbanized environment, with active coastal development, as well as commercial shipping and recreational boating activity. Monitoring of sites throughout the Port since 2018 has revealed periodic extremes in temperature, seawater pH, and salinity, far in excess of what have been measured in most coral reef environments. Despite conditions that would kill many reef species, we have documented diverse coral communities growing on artificial substrates at these sites-reflecting remarkable tolerance to environmental stressors. Furthermore, many of the more prevalent species within these communities are now conspicuously absent or in low abundance on nearby reefs, owing to their susceptibility and exposure to stony coral tissue loss disease. Natural reef frameworks, however, are largely absent at the urban sites and while diverse fish communities are documented, it is unlikely that these communities provide the same goods and services as natural reef habitats. Regardless, the existence of these communities indicates unlikely persistence and highlights the potential for coexistence of threatened species in anthropogenic environments, provided that suitable stewardship strategies are in place.


Assuntos
Antozoários , Animais , Ecossistema , Recifes de Corais , Água do Mar , Espécies em Perigo de Extinção
15.
Science ; 382(6676): 1238-1240, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38060674

RESUMO

Climate change and its impacts on coral reefs have reached unchartered territory.


Assuntos
Antozoários , Mudança Climática , Recifes de Corais , Animais
16.
F1000Res ; 11: 127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415207

RESUMO

The Great Barrier Reef (GBR) is predicted to undergo its sixth mass coral bleaching event during the Southern Hemisphere summer of 2021-2022. Coral bleaching-level heat stress over the GBR is forecast to start earlier than any previous year in the satellite record (1985-present). The National Oceanic and Atmospheric Administration (NOAA) Coral Reef Watch (CRW) near real-time satellite-based heat stress products were used to investigate early-summer sea surface temperature (SST) and heat stress conditions on the GBR during late 2021. As of 14 December 2021, values of instantaneous heat stress (Coral Bleaching HotSpots) and accumulated heat stress over a 12-week running window (Degree Heating Weeks) on the GBR were unprecedented in the satellite record. Further, 89% of GBR satellite reef pixels for this date in 2021 had a positive seven-day SST trend of greater than 0.2 degrees Celsius/week. Background temperatures (the minimum temperature over the previous 29 days) were alarmingly high, with 87% of GBR reef pixels on 14 December 2021 being greater than the maximum SST over that same 29-day period for any year from 1985-2020. The GBR is starting the 2021-2022 summer season with more accumulated heat than ever before, which could have disastrous consequences for the health, recovery, and future of this critical reef system.


Assuntos
Resposta ao Choque Térmico
17.
Sci Rep ; 12(1): 19582, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379970

RESUMO

Coral reef habitat is created when calcium carbonate production by calcifiers exceeds removal by physical and biological erosion. Carbonate budget surveys provide a means of quantifying the framework-altering actions of diverse assemblages of marine species to determine net carbonate production, a single metric that encapsulates reef habitat persistence. In this study, carbonate budgets were calculated for 723 sites across the Florida Reef Tract (FRT) using benthic cover and parrotfish demographic data from NOAA's National Coral Reef Monitoring Program, as well as high-resolution LiDAR topobathymetry. Results highlight the erosional state of the majority of the study sites, with a trend towards more vulnerable habitat in the northern FRT, especially in the Southeast Florida region (- 0.51 kg CaCO3 m-2 year-1), which is in close proximity to urban centers. Detailed comparison of reef types reveals that mid-channel reefs in the Florida Keys have the highest net carbonate production (0.84 kg CaCO3 m-2 year-1) and indicates that these reefs may be hold-outs for reef development throughout the region. This study reports that Florida reefs, specifically their physical structure, are in a net erosional state. As these reefs lose structure, the ecosystem services they provide will be diminished, signifying the importance of increased protections and management efforts to offset these trends.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Florida , Carbonatos
18.
Proc Natl Acad Sci U S A ; 105(30): 10450-5, 2008 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-18663220

RESUMO

Ocean acidification describes the progressive, global reduction in seawater pH that is currently underway because of the accelerating oceanic uptake of atmospheric CO(2). Acidification is expected to reduce coral reef calcification and increase reef dissolution. Inorganic cementation in reefs describes the precipitation of CaCO(3) that acts to bind framework components and occlude porosity. Little is known about the effects of ocean acidification on reef cementation and whether changes in cementation rates will affect reef resistance to erosion. Coral reefs of the eastern tropical Pacific (ETP) are poorly developed and subject to rapid bioerosion. Upwelling processes mix cool, subthermocline waters with elevated pCO(2) (the partial pressure of CO(2)) and nutrients into the surface layers throughout the ETP. Concerns about ocean acidification have led to the suggestion that this region of naturally low pH waters may serve as a model of coral reef development in a high-CO(2) world. We analyzed seawater chemistry and reef framework samples from multiple reef sites in the ETP and found that a low carbonate saturation state (Omega) and trace abundances of cement are characteristic of these reefs. These low cement abundances may be a factor in the high bioerosion rates previously reported for ETP reefs, although elevated nutrients in upwelled waters may also be limiting cementation and/or stimulating bioerosion. ETP reefs represent a real-world example of coral reef growth in low-Omega waters that provide insights into how the biological-geological interface of coral reef ecosystems will change in a high-CO(2) world.


Assuntos
Antozoários , Dióxido de Carbono/química , Animais , Carbonato de Cálcio/química , Clima , Conservação dos Recursos Naturais , Ecossistema , Geografia , Efeito Estufa , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar , Temperatura
19.
Sci Rep ; 10(1): 12279, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704016

RESUMO

Approximately 380,000 underway measurements of sea surface salinity, temperature, and carbon dioxide (CO2) in the Gulf of Mexico (GoM) were compiled from the Surface Ocean CO2 Atlas (SOCAT) to provide a comprehensive observational analysis of spatiotemporal CO2 dynamics from 1996 to 2017. An empirical orthogonal function (EOF) was used to derive the main drivers of spatial and temporal variability in the dataset. In open and coastal waters, drivers were identified as a biological component linked to riverine water, and temperature seasonality. Air-sea flux estimates indicate the GoM open (- 0.06 ± 0.45 mol C m-2 year-1) and coastal (- 0.03 ± 1.83 mol C m-2 year-1) ocean are approximately neutral in terms of an annual source or sink for atmospheric CO2. Surface water pCO2 in the northwest and southeast GoM open ocean is increasing (1.63 ± 0.63 µatm  year-1 and 1.70 ± 0.14 µatm year-1, respectively) at rates comparable to those measured at long-term ocean time-series stations. The average annual increase in coastal CO2 was 3.20 ± 1.47 µatm year-1 for the northwestern GoM and 2.35 ± 0.82 µatm year-1 for the west Florida Shelf. However, surface CO2 in the central (coastal and open) GoM, which is influenced by Mississippi and Atchafalaya River outflow, remained fairly stable over this time period.

20.
Mar Biol ; 165(6): 99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755140

RESUMO

The persistence of coral reef frameworks requires that calcium carbonate (CaCO3) production by corals and other calcifiers outpaces CaCO3 loss via physical, chemical, and biological erosion. Coral bleaching causes declines in CaCO3 production, but this varies with bleaching severity and the species impacted. We conducted census-based CaCO3 budget surveys using the established ReefBudget approach at Cheeca Rocks, an inshore patch reef in the Florida Keys, annually from 2012 to 2016. This site experienced warm-water bleaching in 2011, 2014, and 2015. In 2017, we obtained cores of the dominant calcifying coral at this site, Orbicella faveolata, to understand how calcification rates were impacted by bleaching and how they affected the reef-wide CaCO3 budget. Bleaching depressed O. faveolata growth and the decline of this one species led to an overestimation of mean (± std. error) reef-wide CaCO3 production by + 0.68 (± 0.167) to + 1.11 (± 0.236) kg m-2 year-1 when using the static ReefBudget coral growth inputs. During non-bleaching years, the ReefBudget inputs slightly underestimated gross production by - 0.10 (± 0.022) to - 0.43 (± 0.100) kg m-2 year-1. Carbonate production declined after the first year of back-to-back bleaching in 2014, but then increased after 2015 to values greater than the initial surveys in 2012. Cheeca Rocks is an outlier in the Caribbean and Florida Keys in terms of coral cover, carbonate production, and abundance of O. faveolata, which is threatened under the Endangered Species Act. Given the resilience of this site to repeated bleaching events, it may deserve special management attention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA