Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Cancer ; 152(8): 1698-1706, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36468179

RESUMO

NK cells represent key players capable of driving antitumor immune responses. However, the potent immunosuppressive activity of the tumor microenvironment (TME) may impair their effector function. Here, we strengthen the importance of metabolic interactions between NK cells and TME and propose metabolic dysfunction as one of the major mechanisms behind NK failure in cancer treatment. In particular, we described that TME has a direct negative impact on NK cell function by disrupting their mitochondrial integrity and function in pediatric and adult patients with primary and metastatic cancer. Our results will help to design new strategies aimed at increasing the NK cell antitumor efficacy by their metabolic reprogramming. In this regard, we reveal an unprecedented role of IL15 in the metabolic reprogramming of NK cells enhancing their antitumor functions. IL15 prevents the inhibitory effect of soluble factors present in TME and restores both the metabolic characteristics and the effector function of NK cells inhibited by exposure to malignant pleural fluid. Thus, we propose here that IL15 may be exploited as a new strategy to metabolically reprogram NK cells with the aim of increasing the efficacy of NK-based immunotherapy in a wide range of currently refractory adult and pediatric solid tumors.


Assuntos
Neoplasias , Microambiente Tumoral , Adulto , Humanos , Criança , Interleucina-15/metabolismo , Células Matadoras Naturais , Neoplasias/metabolismo , Imunoterapia/métodos
2.
J Hepatol ; 77(5): 1359-1372, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35738508

RESUMO

BACKGROUND & AIMS: The landscape and function of the immune infiltrate of intrahepatic cholangiocarcinoma (iCCA), a rare, yet aggressive tumor of the biliary tract, remains poorly characterized, limiting development of successful immunotherapies. Herein, we aimed to define the molecular characteristics of tumor-infiltrating leukocytes with a special focus on CD4+ regulatory T cells (Tregs). METHODS: We used high-dimensional single-cell technologies to characterize the T-cell and myeloid compartments of iCCA tissues, comparing these with their tumor-free peritumoral and circulating counterparts. We further used genomics and cellular assays to define the iCCA-specific role of a novel transcription factor, mesenchyme homeobox 1 (MEOX1), in Treg biology. RESULTS: We found poor infiltration of putative tumor-specific CD39+ CD8+ T cells accompanied by abundant infiltration of hyperactivated CD4+ Tregs. Single-cell RNA-sequencing identified an altered network of transcription factors in iCCA-infiltrating compared to peritumoral T cells, suggesting reduced effector functions by tumor-infiltrating CD8+ T cells and enhanced immunosuppression by CD4+ Tregs. Specifically, we found that expression of MEOX1 was highly enriched in tumor-infiltrating Tregs, and demonstrated that MEOX1 overexpression is sufficient to reprogram circulating Tregs to acquire the transcriptional and epigenetic landscape of tumor-infiltrating Tregs. Accordingly, enrichment of the MEOX1-dependent gene program in Tregs was strongly associated with poor prognosis in a large cohort of patients with iCCA. CONCLUSIONS: We observed abundant infiltration of hyperactivated CD4+ Tregs in iCCA tumors along with reduced CD8+ T-cell effector functions. Interfering with hyperactivated Tregs should be explored as an approach to enhance antitumor immunity in iCCA. LAY SUMMARY: Immune cells have the potential to slow or halt the progression of tumors. However, some tumors, such as intrahepatic cholangiocarcinoma, are associated with very limited immune responses (and infiltration of cancer-targeting immune cells). Herein, we show that a specific population of regulatory T cells (a type of immune cell that actually suppresses the immune response) are hyperactivated in intrahepatic cholangiocarcinoma. Targeting these cells could enable cancer-targeting immune cells to act more effectively and should be looked at as a potential therapeutic approach to this aggressive cancer type.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , RNA/metabolismo , Linfócitos T Reguladores , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Análise de Célula Única
3.
Immunity ; 38(2): 237-49, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23313588

RESUMO

Interactions with antigen-presenting cells (APCs) interrupt T cell migration through tissues and trigger signaling pathways that converge on the activation of transcriptional regulators, including nuclear factor of activated T cells (NFAT), which control T cell function and differentiation. Both stable and unstable modes of cognate T cell-APC interactions have been observed in vivo, but the functional significance of unstable, serial contacts has remained unclear. Here we used multiphoton intravital microscopy in lymph nodes and tumors to show that while NFAT nuclear import was fast (t(1/2 max)∼1 min), nuclear export was slow (t(1/2)∼20 min) in T cells. During delayed export, nuclear NFAT constituted a short-term imprint of transient TCR signals and remained transcriptionally active for the T cell tolerance gene Egr2, but not for the effector gene Ifng, which required continuous TCR triggering for expression. This provides a potential mechanistic basis for the observation that a predominance of unstable APC interactions correlates with the induction of T cell tolerance.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Tolerância Imunológica , Memória Imunológica , Linfonodos/metabolismo , Fatores de Transcrição NFATC/genética , Linfócitos T/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Comunicação Celular , Diferenciação Celular , Movimento Celular , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/imunologia , Regulação da Expressão Gênica , Humanos , Interferon gama/genética , Interferon gama/imunologia , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Fatores de Transcrição NFATC/imunologia , Transporte Proteico , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Linfócitos T/imunologia , Células Tumorais Cultivadas
4.
Hum Mol Genet ; 24(R1): R67-73, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26160910

RESUMO

Adoptively transferred antigen-specific T cells that recognize tumor antigens through their native receptors have many potential benefits as treatment for virus-associated diseases and malignancies, due to their ability to selectively recognize tumor antigens, expand and persist to provide long-term protection. Infusions of T cells targeting Epstein-Barr virus (EBV) antigens have shown encouraging response rates in patients with post-transplant lymphoproliferative disease as well as EBV-positive lymphomas and nasopharyngeal cancer, although a recent study also showed that human papilloma virus-reactive T cells can induce complete regression of metastatic cervical cancer. This strategy is also being evaluated to target non-viral tumor-associated antigens. Targeting these less immunogenic antigens is more challenging, as tumor antigens are generally weak, and high avidity T cells specific for self-antigens are deleted in the thymus, but tumor responses have been reported. Current research focusses on defining factors that promote in vivo persistence of transferred cells and ameliorate the immunosuppressive microenvironment. To this end, investigators are evaluating the effects of combining adoptive transfer of antigen-specific T cells with other immunotherapy moieties such as checkpoint inhibitors. Genetic modification of infused T cells may also be used to overcome tumor evasion mechanisms, and vaccines may be used to promote in vivo proliferation.


Assuntos
Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia
5.
Eur J Immunol ; 46(1): 192-203, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26464217

RESUMO

Dendritic cells (DCs) play a vital role in innate and adaptive immunities. Inducible depletion of CD11c(+) DCs engineered to express a high-affinity diphtheria toxin receptor has been a powerful tool to dissect DC function in vivo. However, despite reports showing that loss of DCs induces transient monocytosis, the monocyte population that emerges and the potential impact of monocytes on studies of DC function have not been investigated. We found that depletion of CD11c(+) cells from CD11c.DTR mice induced the expansion of a variant CD64(+) Ly6C(+) monocyte population in the spleen and blood that was distinct from conventional monocytes. Expansion of CD64(+) Ly6C(+) monocytes was independent of mobilization from the BM via CCR2 but required the cytokine, G-CSF. Indeed, this population was also expanded upon exposure to exogenous G-CSF in the absence of DC depletion. CD64(+) Ly6C(+) monocytes were characterized by upregulation of innate signaling apparatus despite the absence of inflammation, and an increased capacity to produce TNF-α following LPS stimulation. Thus, depletion of CD11c(+) cells induces expansion of a unique CD64(+) Ly6C(+) monocyte population poised to synthesize TNF-α. This finding will require consideration in experiments using depletion strategies to test the role of CD11c(+) DCs in immunity.


Assuntos
Células Dendríticas/imunologia , Monócitos/citologia , Monócitos/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Antígenos Ly/imunologia , Antígeno CD11c/imunologia , Citometria de Fluxo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de IgG/imunologia , Fator de Necrose Tumoral alfa/imunologia
6.
J Immunol ; 194(1): 125-133, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25404365

RESUMO

Exhaustion of chronically stimulated CD8(+) T cells is a significant obstacle to immune control of chronic infections or tumors. Although coinhibitory checkpoint blockade with anti-programmed death ligand 1 (PD-L1) Ab can restore functions to exhausted T cell populations, recovery is often incomplete and dependent upon the pool size of a quiescent T-bet(high) subset that expresses lower levels of PD-1. In a model in which unhelped, HY-specific CD8(+) T cells gradually lose function following transfer to male bone marrow transplantation recipients, we have explored the effect of shifting the balance away from coinhibition and toward costimulation by combining anti-PD-L1 with agonistic Abs to the TNFR superfamily members, OX40 and CD27. Several weeks following T cell transfer, both agonistic Abs, but especially anti-CD27, demonstrated synergy with anti-PD-L1 by enhancing CD8(+) T cell proliferation and effector cytokine generation. Anti-CD27 and anti-PD-L1 synergized by downregulating the expression of multiple quiescence-related genes concomitant with a reduced frequency of T-bet(high) cells within the exhausted population. However, in the presence of persistent Ag, the CD8(+) T cell response was not sustained and the overall size of the effector cytokine-producing pool eventually contracted to levels below that of controls. Thus, CD27-mediated costimulation can synergize with coinhibitory checkpoint blockade to switch off molecular programs for quiescence in exhausted T cell populations, but at the expense of losing precursor cells required to maintain a response.


Assuntos
Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Glicoproteínas de Membrana/imunologia , Receptores OX40/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Fatores de Necrose Tumoral/imunologia , Transferência Adotiva , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Transplante de Medula Óssea , Linfócitos T CD8-Positivos/transplante , Feminino , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligante OX40 , Receptores OX40/genética , Proteínas com Domínio T/metabolismo
7.
Genes Chromosomes Cancer ; 54(8): 516-526, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26052821

RESUMO

The pathways of NOTCH and PI3K/AKT are dysregulated in about 60% and 48% of T-cell acute lymphoblastic leukemia (T-ALL) patients, respectively. In this context, they interact and cooperate in controlling tumor cell biology. Here, we propose a novel mechanism by which the PI3K/AKT pathway regulates NOTCH1 in T-ALL, starting from the evidence that the inhibition of PI3K/AKT signaling induced by treatment with LY294002 or transient transfection with a dominant negative AKT mutant downregulates NOTCH1 protein levels and activity, without affecting NOTCH1 transcription. We showed that the withdrawal of PI3K/AKT signaling was associated to NOTCH1 phosphorylation in tyrosine residues and monoubiquitination of NOTCH1 detected by Ubiquitin capture assay. Co-immunoprecipitation assay and colocalization analysis further showed that the E3 ubiquitin ligase c-Cbl interacts and monoubiquitinates NOTCH1, activating its lysosomal degradation. These results suggest that the degradation of NOTCH1 could represent a mechanism of control by which NOTCH1 receptors are actively removed from the cell surface. This mechanism is finely regulated by the PI3K/AKT pathway in physiological conditions. In pathological conditions characterized by PI3K/AKT hyperactivation, such as T-ALL, the excessive AKT signaling could lead to NOTCH1 signaling dysregulation. Therefore, a therapeutic strategy directed to PI3K/AKT in T-ALL could contemporaneously inhibit the dysregulated NOTCH1 signaling. © 2015 Wiley Periodicals, Inc.

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167311, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909851

RESUMO

Tumours exhibit significant heterogeneity in their molecular profiles across patients, largely influenced by the tissue of origin, where certain driver gene mutations are predominantly associated with specific cancer types. Here, we unveil an additional layer of complexity: some cancer types display anatomic location-specific mutation profiles akin to tissue-specificity. To better understand this phenomenon, we concentrate on colon cancer. While prior studies have noted changes of the frequency of molecular alterations along the colon, the underlying reasons and whether those changes occur rather gradual or are distinct between the left and right colon, remain unclear. Developing and leveraging stringent statistical models on molecular data from 522 colorectal tumours from The Cancer Genome Atlas, we reveal disparities in molecular properties between the left and right colon affecting many genes. Interestingly, alterations in genes responsive to environmental cues and properties of the tumour ecosystem, including metabolites which we quantify in a cohort of 27 colorectal cancer patients, exhibit continuous trends along the colon. Employing network methodologies, we uncover close interactions between metabolites and genes, including drivers of colon cancer, showing continuous abundance or alteration profiles. This underscores how anatomic biases in the composition and interactions within the tumour ecosystem help explaining gradients of carcinogenesis along the colon.

9.
J Immunol ; 186(3): 1361-8, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21209285

RESUMO

Transplantation of allogeneic hematopoietic stem cells with or without immunocompetent lymphocytes has proved a successful strategy in the treatment of hematological malignancies. We have recently shown that this approach can also cure mouse prostate cancer, provided that it is combined with tumor-specific vaccination. Whether the response to alloantigens acts by providing helper function to enhance vaccine-specific responses or in other ways impinges on vaccine immunogenicity remains to be clarified, and this question is of clinical relevance. In this study, we have addressed this issue by comparing the immunogenicity of dendritic cells pulsed with a peptide derived from a tumor/viral model Ag in recipients of donor cells either syngeneic to the host or differing for either Y-encoded or multiple minor H antigens. We report that vaccination elicits comparable proliferation and differentiation of peptide-specific CD8(+) T cells despite concurrent expansion and differentiation of minor H antigen-specific IFN-γ effector T cells. Depletion of alloreactive CD4(+) T cells reduced alloreactivity but not vaccine-induced CD8(+) T cell priming, suggesting that alloresponses do not provide helper functions in peripheral lymphoid tissues. Vaccine-mediated T cell priming was also preserved in the case of multiple minor H antigen disparities, prone to graft-versus-host disease. Thus, in the context of nonmyeloablative allotransplantation aimed at restoring an effective tumor-specific T cell repertoire, minor H antigen-specific T cells do not interfere with vaccine-induced T cell priming, supporting the notion that posttransplant vaccination is a valuable strategy to boost tumor and pathogen-specific protective immunity.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Epitopos de Linfócito T/administração & dosagem , Antígenos de Histocompatibilidade Menor/administração & dosagem , Sequência de Aminoácidos , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Epitopos de Linfócito T/imunologia , Feminino , Antígeno H-Y/administração & dosagem , Antígeno H-Y/imunologia , Transplante de Células-Tronco Hematopoéticas , Interferon gama/biossíntese , Interferon gama/fisiologia , Ativação Linfocitária/imunologia , Transfusão de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/imunologia , Dados de Sequência Molecular , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Transplante Homólogo
10.
Cell Metab ; 35(6): 907-909, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37285805

RESUMO

The composition of nutrients in the tumor microenvironment is a key determinant of anti-tumor CD8+ T cell response. In this issue of Cell Metabolism, Jiang and colleagues unveil that tumor-derived fumarate dampens TCR signaling in CD8+ T cells, resulting in defective activation, loss of effector functions, and associated failure of tumor control.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Linfócitos T CD8-Positivos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral
11.
Genome Med ; 15(1): 32, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37131219

RESUMO

BACKGROUND: The association between microbes and cancer has been reported repeatedly; however, it is not clear if molecular tumour properties are connected to specific microbial colonisation patterns. This is due mainly to the current technical and analytical strategy limitations to characterise tumour-associated bacteria. METHODS: Here, we propose an approach to detect bacterial signals in human RNA sequencing data and associate them with the clinical and molecular properties of the tumours. The method was tested on public datasets from The Cancer Genome Atlas, and its accuracy was assessed on a new cohort of colorectal cancer patients. RESULTS: Our analysis shows that intratumoural microbiome composition is correlated with survival, anatomic location, microsatellite instability, consensus molecular subtype and immune cell infiltration in colon tumours. In particular, we find Faecalibacterium prausnitzii, Coprococcus comes, Bacteroides spp., Fusobacterium spp. and Clostridium spp. to be strongly associated with tumour properties. CONCLUSIONS: We implemented an approach to concurrently analyse clinical and molecular properties of the tumour as well as the composition of the associated microbiome. Our results may improve patient stratification and pave the path for mechanistic studies on microbiota-tumour crosstalk.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Microbiota , Humanos , Neoplasias Colorretais/genética , Neoplasias do Colo/genética , Bactérias/genética , Análise de Sequência de RNA
12.
Cell Metab ; 35(4): 633-650.e9, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36898381

RESUMO

The metabolic state represents a major hurdle for an effective adoptive T cell therapy (ACT). Indeed, specific lipids can harm CD8+ T cell (CTL) mitochondrial integrity, leading to defective antitumor responses. However, the extent to which lipids can affect the CTL functions and fate remains unexplored. Here, we show that linoleic acid (LA) is a major positive regulator of CTL activity by improving metabolic fitness, preventing exhaustion, and stimulating a memory-like phenotype with superior effector functions. We report that LA treatment enhances the formation of ER-mitochondria contacts (MERC), which in turn promotes calcium (Ca2+) signaling, mitochondrial energetics, and CTL effector functions. As a direct consequence, the antitumor potency of LA-instructed CD8 T cells is superior in vitro and in vivo. We thus propose LA treatment as an ACT potentiator in tumor therapy.


Assuntos
Linfócitos T CD8-Positivos , Ácido Linoleico , Ácido Linoleico/metabolismo , Transdução de Sinais
13.
Nat Commun ; 13(1): 6752, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347862

RESUMO

CD8+ T cells are a major prognostic determinant in solid tumors, including colorectal cancer (CRC). However, understanding how the interplay between different immune cells impacts on clinical outcome is still in its infancy. Here, we describe that the interaction of tumor infiltrating neutrophils expressing high levels of CD15 with CD8+ T effector memory cells (TEM) correlates with tumor progression. Mechanistically, stromal cell-derived factor-1 (CXCL12/SDF-1) promotes the retention of neutrophils within tumors, increasing the crosstalk with CD8+ T cells. As a consequence of the contact-mediated interaction with neutrophils, CD8+ T cells are skewed to produce high levels of GZMK, which in turn decreases E-cadherin on the intestinal epithelium and favors tumor progression. Overall, our results highlight the emergence of GZMKhigh CD8+ TEM in non-metastatic CRC tumors as a hallmark driven by the interaction with neutrophils, which could implement current patient stratification and be targeted by novel therapeutics.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Neutrófilos , Neoplasias Colorretais/patologia , Linfócitos do Interstício Tumoral
14.
Oncoimmunology ; 10(1): 1992880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777916

RESUMO

Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (>4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf-mutant murine melanoma model (BrafV600E/Pten-/- ). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies.


Assuntos
Melanoma , Preparações Farmacêuticas , Animais , Humanos , Imunoterapia , Melanoma/tratamento farmacológico , Melanoma/genética , Células T de Memória , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Proto-Oncogênicas B-raf/genética
15.
Front Immunol ; 11: 1915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973794

RESUMO

The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.


Assuntos
Memória Imunológica , Imunoterapia Adotiva , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/terapia , Linfócitos T/transplante , Imunidade Adaptativa , Animais , Diferenciação Celular , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Evasão Tumoral , Microambiente Tumoral
16.
J Clin Invest ; 130(4): 1896-1911, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917684

RESUMO

Acute graft-versus-host disease (GVHD) is initially triggered by alloreactive T cells, which damage peripheral tissues and lymphoid organs. Subsequent transition to chronic GVHD involves the emergence of autoimmunity, although the underlying mechanisms driving this process are unclear. Here, we tested the hypothesis that acute GVHD blocks peripheral tolerance of autoreactive T cells by impairing lymph node (LN) display of peripheral tissue-restricted antigens (PTAs). At the initiation of GVHD, LN fibroblastic reticular cells (FRCs) rapidly reduced expression of genes regulated by DEAF1, an autoimmune regulator-like transcription factor required for intranodal expression of PTAs. Subsequently, GVHD led to the selective elimination of the FRC population, and blocked the repair pathways required for its regeneration. We used a transgenic mouse model to show that the loss of presentation of an intestinal PTA by FRCs during GVHD resulted in the activation of autoaggressive T cells and gut injury. Finally, we show that FRCs normally expressed a unique PTA gene signature that was highly enriched for genes expressed in the target organs affected by chronic GVHD. In conclusion, acute GVHD damages and prevents repair of the FRC network, thus disabling an essential platform for purging autoreactive T cells from the repertoire.


Assuntos
Autoantígenos/imunologia , Autoimunidade , Doença Enxerto-Hospedeiro/imunologia , Enteropatias/imunologia , Linfonodos/imunologia , Linfócitos T/imunologia , Animais , Autoantígenos/genética , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Enteropatias/genética , Enteropatias/patologia , Linfonodos/patologia , Camundongos , Camundongos Knockout , Linfócitos T/patologia
17.
Genome Med ; 12(1): 94, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33121525

RESUMO

BACKGROUND: High-grade serous ovarian cancer (HGSOC) is a major unmet need in oncology. The remaining uncertainty on its originating tissue has hampered the discovery of molecular oncogenic pathways and the development of effective therapies. METHODS: We used an approach based on the retention in tumors of a DNA methylation trace (OriPrint) that distinguishes the two putative tissues of origin of HGSOC, the fimbrial (FI) and ovarian surface epithelia (OSE), to stratify HGSOC by several clustering methods, both linear and non-linear. The identified tumor subtypes (FI-like and OSE-like HGSOC) were investigated at the RNAseq level to stratify an in-house cohort of macrodissected HGSOC FFPE samples to derive overall and disease-free survival and identify specific transcriptional alterations of the two tumor subtypes, both by classical differential expression and weighted correlation network analysis. We translated our strategy to published datasets and verified the co-occurrence of previously described molecular classification of HGSOC. We performed cytokine analysis coupled to immune phenotyping to verify alterations in the immune compartment associated with HGSOC. We identified genes that are both differentially expressed and methylated in the two tumor subtypes, concentrating on PAX8 as a bona fide marker of FI-like HGSOC. RESULTS: We show that: - OriPrint is a robust DNA methylation tracer that exposes the tissue of origin of HGSOC. - The tissue of origin of HGSOC is the main determinant of DNA methylation variance in HGSOC. - The tissue of origin is a prognostic factor for HGSOC patients. - FI-like and OSE-like HGSOC are endowed with specific transcriptional alterations that impact patients' prognosis. - OSE-like tumors present a more invasive and immunomodulatory phenotype, compatible with its worse prognostic impact. - Among genes that are differentially expressed and regulated in FI-like and OSE-like HGSOC, PAX8 is a bona fide marker of FI-like tumors. CONCLUSIONS: Through an integrated approach, our work demonstrates that both FI and OSE are possible origins for human HGSOC, whose derived subtypes are both molecularly and clinically distinct. These results will help define a new roadmap towards rational, subtype-specific therapeutic inroads and improved patients' care.


Assuntos
Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Epigênese Genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Imunomodulação , Gradação de Tumores , Fenótipo , Prognóstico , Estudos Retrospectivos , Transcriptoma
18.
J Exp Med ; 217(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32491160

RESUMO

CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Ácidos Graxos/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Acil-CoA Desidrogenase de Cadeia Longa/biossíntese , Acil-CoA Desidrogenase de Cadeia Longa/genética , Animais , Linfócitos T CD8-Positivos/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Regulação para Baixo , Ácidos Graxos/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Mutantes , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
19.
Cancer Res ; 77(3): 658-671, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872095

RESUMO

Donor-derived allogeneic T cells evoke potent graft versus tumor (GVT) effects likely due to the simultaneous recognition of tumor-specific and host-restricted minor histocompatibility (H) antigens. Here we investigated whether such effects could be reproduced in autologous settings by TCR gene-engineered lymphocytes. We report that T cells redirected either to a broadly expressed Y-encoded minor H antigen or to a tumor-associated antigen, although poorly effective if individually transferred, when simultaneously administered enabled acute autochthonous tumor debulking and resulted in durable clinical remission. Y-redirected T cells proved hyporesponsive in peripheral lymphoid organs, whereas they retained effector function at the tumor site, where in synergy with tumor-redirected lymphocytes, they instructed TNFα expression, endothelial cell activation, and intratumoral T-cell infiltration. While neutralizing TNFα hindered GVT effects by the combined T-cell infusion, a single injection of picogram amounts of NGR-TNF, a tumor vessel-targeted TNFα derivative currently in phase III clinical trials, substituted for Y-redirected cells and enabled tumor debulking by tumor-redirected lymphocytes. Together, our results provide new mechanistic insights into allogeneic GVT, validate the importance of targeting the tumor and its associated stroma, and prove the potency of a novel combined approach suitable for immediate clinical implementation. Cancer Res; 77(3); 658-71. ©2016 AACR.


Assuntos
Adenocarcinoma/patologia , Linfócitos T CD8-Positivos/transplante , Imunoterapia Adotiva/métodos , Antígenos de Histocompatibilidade Menor/imunologia , Neoplasias da Próstata/patologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Linfócitos T CD8-Positivos/imunologia , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA