RESUMO
Dystrophic epidermolysis bullosa (DEB) is a clinically heterogeneous heritable skin disorder, characterized by blistering of the skin and mucous membranes following minor trauma. Dominant (DDEB) and recessive (RDEB) forms are caused by pathogenic variants in COL7A1 gene. Argentina's population has a heterogeneous genetic background, and little is known about the molecular basis of DEB in our country or in native South American populations. In this study, we present the prevalence and geographical distribution of pathogenic variants found in 181 patients from 136 unrelated families (31 DDEB and 105 RDEB). We detected 95 different variants, 59 of them were previously reported in the literature and 36 were novel, nine of which were detected in more than one family. The most prevalent pathogenic variants were identified in exon 73 in DDEB patients and in exon 3 in RDEB patients. We also report a new phenotype-genotype correlation found in 10 unrelated families presenting mild blistering and severe mucosal involvement. Molecular studies in populations with an unexplored genetic background like ours revealed a diversity of pathogenic variants, and we hope that these findings will contribute to the definition of targets for new gene therapies.
Assuntos
Colágeno Tipo VII , Epidermólise Bolhosa Distrófica , Argentina/epidemiologia , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Estudos de Associação Genética , Humanos , Mutação , FenótipoRESUMO
BACKGROUND: Kindler syndrome is a rare genodermatosis. Major clinical criteria include acral blistering in infancy and childhood, progressive poikiloderma, skin atrophy, abnormal photosensitivity, and gingival fragility. METHODS: FERMT1 gene was sequenced in 5 patients with a clinical diagnosis of Kindler syndrome. RESULTS: We report a novel pathogenic variant detected in four unrelated families of Paraguayan origin, where one nucleotide deletion in FERMT1 gene (c.450delG) is predicted to cause a frameshift mutation leading to loss of function. Haplotype analysis revealed the propagation of an ancestral allele through this population. CONCLUSIONS: The identification of this recurrent pathogenic variant enables optimization of molecular detection strategies in our patients, reducing the cost of diagnosis.