Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
New Phytol ; 237(1): 265-278, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131553

RESUMO

Caterpillar oral secretion (OS) contains active molecules that modulate plant defense signaling. We isolated an effector-like protein (Highly Accumulated Secretory Protein 1, HAS1) from cotton bollworm (Helicoverpa armigera) that is the most highly accumulated secretory protein of the nondigestive components in OS and belongs to venom R-like protein. Elimination of HAS1 by plant-mediated RNA interference reduced the suppression of OS on the defense response in plants. Plants expressing HAS1 are more susceptible to insect herbivory accompanied by the reduced expressions of multiple defense genes. HAS1 binds to the basic helix-loop-helix (bHLH) transcription factors, including GoPGF involved in pigmented gland formation and defense compounds biosynthesis in cotton and MYC3/MYC4 the main regulators in jasmonate (JA) signaling in Arabidopsis. The binding activity is required for HAS1 to inhibit the activation of bHLHs on plant defense gene expressions. Together with our previous study that another venom R-like protein HARP1 in cotton bollworm OS blocks JA signaling by interacting with JASMONATE-ZIM-domain repressors, we conclude that the venom R-like proteins in OS interfere with plant defense in a dual suppression manner. Considering the venom proteins in parasitic wasp assault the immune system of its host animal, our investigation reveals their conserved function in carnivorous and herbivorous insects.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mariposas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Transativadores/metabolismo , Proteínas Repressoras/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas/metabolismo , Gossypium/genética , Gossypium/metabolismo
2.
Plant Cell ; 32(1): 226-241, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31649122

RESUMO

Age and wounding are two major determinants for regeneration. In plants, the root regeneration is triggered by wound-induced auxin biosynthesis. As plants age, the root regenerative capacity gradually decreases. How wounding leads to the auxin burst and how age and wound signals collaboratively regulate root regenerative capacity are poorly understood. Here, we show that the increased levels of three closely-related miR156-targeted Arabidopsis (Arabidopsis thaliana) SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, SPL2, SPL10, and SPL11, suppress root regeneration with age by inhibiting wound-induced auxin biosynthesis. Mechanistically, we find that a subset of APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors including ABSCISIC ACID REPRESSOR1 and ERF109 is rapidly induced by wounding and serves as a proxy for wound signal to induce auxin biosynthesis. In older plants, SPL2/10/11 directly bind to the promoters of AP2/ERFs and attenuates their induction, thereby dampening auxin accumulation at the wound. Our results thus identify AP2/ERFs as a hub for integration of age and wound signal for root regeneration.


Assuntos
Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Proteínas de Homeodomínio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Regeneração/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Ácidos Indolacéticos/metabolismo , MicroRNAs/metabolismo , Proteínas Nucleares , Regiões Promotoras Genéticas , Regeneração/genética , Proteínas Repressoras , Fatores de Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(28): 14331-14338, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221756

RESUMO

Insects have evolved effectors to conquer plant defense. Most known insect effectors are isolated from sucking insects, and examples from chewing insects are limited. Moreover, the targets of insect effectors in host plants remain unknown. Here, we address a chewing insect effector and its working mechanism. Cotton bollworm (Helicoverpa armigera) is a lepidopteran insect widely existing in nature and severely affecting crop productivity. We isolated an effector named HARP1 from H. armigera oral secretion (OS). HARP1 was released from larvae to plant leaves during feeding and entered into the plant cells through wounding sites. Expression of HARP1 in Arabidopsis mitigated the global expression of wounding and jasmonate (JA) responsive genes and rendered the plants more susceptible to insect feeding. HARP1 directly interacted with JASMONATE-ZIM-domain (JAZ) repressors to prevent the COI1-mediated JAZ degradation, thus blocking JA signaling transduction. HARP1-like proteins have conserved function as effectors in noctuidae, and these types of effectors might contribute to insect adaptation to host plants during coevolution.


Assuntos
Gossypium/genética , Interações Hospedeiro-Parasita/genética , Mariposas/patogenicidade , Doenças das Plantas/genética , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ciclopentanos/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Gossypium/crescimento & desenvolvimento , Gossypium/parasitologia , Mariposas/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transdução de Sinais/genética
4.
Proc Natl Acad Sci U S A ; 115(23): E5410-E5418, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784821

RESUMO

Gossypol and related sesquiterpene aldehydes in cotton function as defense compounds but are antinutritional in cottonseed products. By transcriptome comparison and coexpression analyses, we identified 146 candidates linked to gossypol biosynthesis. Analysis of metabolites accumulated in plants subjected to virus-induced gene silencing (VIGS) led to the identification of four enzymes and their supposed substrates. In vitro enzymatic assay and reconstitution in tobacco leaves elucidated a series of oxidative reactions of the gossypol biosynthesis pathway. The four functionally characterized enzymes, together with (+)-δ-cadinene synthase and the P450 involved in 7-hydroxy-(+)-δ-cadinene formation, convert farnesyl diphosphate (FPP) to hemigossypol, with two gaps left that each involves aromatization. Of six intermediates identified from the VIGS-treated leaves, 8-hydroxy-7-keto-δ-cadinene exerted a deleterious effect in dampening plant disease resistance if accumulated. Notably, CYP71BE79, the enzyme responsible for converting this phytotoxic intermediate, exhibited the highest catalytic activity among the five enzymes of the pathway assayed. In addition, despite their dispersed distribution in the cotton genome, all of the enzyme genes identified show a tight correlation of expression. Our data suggest that the enzymatic steps in the gossypol pathway are highly coordinated to ensure efficient substrate conversion.


Assuntos
Gossipol/biossíntese , Gossipol/metabolismo , Vias Biossintéticas , Gossypium/metabolismo , Isomerases/biossíntese , Isomerases/metabolismo , Folhas de Planta/metabolismo , Sesquiterpenos Policíclicos , Sesquiterpenos/metabolismo , Transcriptoma/efeitos dos fármacos
5.
Plant Cell Physiol ; 60(12): 2638-2647, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31418777

RESUMO

As sessile and autotrophic organisms, plants have evolved sophisticated pathways to produce a rich array of specialized metabolites, many of which are biologically active and function as defense substances in protecting plants from herbivores and pathogens. Upon stimuli, these structurally diverse small molecules may be synthesized or constitutively accumulated. Jasmonate acids (JAs) are the major defense phytohormone involved in transducing external signals (such as wounding) to activate defense reactions, including, in particular, the reprogramming of metabolic pathways that initiate and enhance the production of defense compounds against insect herbivores and pathogens. In this review, we summarize the progress of recent research on the control of specialized metabolic pathways in plants by JA signaling, with an emphasis on the molecular regulation of terpene and alkaloid biosynthesis. We also discuss the interplay between JA signaling and various signaling pathways during plant defense responses. These studies provide valuable data for breeding insect-proof crops and pave the way to engineering the production of valuable metabolites in future.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Animais , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/fisiologia , Plantas/microbiologia , Plantas/parasitologia , Transdução de Sinais/fisiologia
6.
New Phytol ; 218(3): 1061-1075, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29465754

RESUMO

Cotton cultivars have evolved to produce extensive, long, seed-born fibers important for the textile industry, but we know little about the molecular mechanism underlying spinnable fiber formation. Here, we report how PACLOBUTRAZOL RESISTANCE 1 (PRE1) in cotton, which encodes a basic helix-loop-helix (bHLH) transcription factor, is a target gene of spinnable fiber evolution. Differential expression of homoeologous genes in polyploids is thought to be important to plant adaptation and novel phenotypes. PRE1 expression is specific to cotton fiber cells, upregulated during their rapid elongation stage and A-homoeologous biased in allotetraploid cultivars. Transgenic studies demonstrated that PRE1 is a positive regulator of fiber elongation. We determined that the natural variation of the canonical TATA-box, a regulatory element commonly found in many eukaryotic core promoters, is necessary for subgenome-biased PRE1 expression, representing a mechanism underlying the selection of homoeologous genes. Thus, variations in the promoter of the cell elongation regulator gene PRE1 have contributed to spinnable fiber formation in cotton. Overexpression of GhPRE1 in transgenic cotton yields longer fibers with improved quality parameters, indicating that this bHLH gene is useful for improving cotton fiber quality.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética , Sequência de Bases , Modelos Biológicos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliploidia , Deleção de Sequência/genética , TATA Box/genética , Fatores de Transcrição/metabolismo
7.
PLoS Genet ; 10(4): e1004266, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699192

RESUMO

The miR156-targeted squamosa promoter binding protein like (SPL) transcription factors function as an endogenous age cue in regulating plant phase transition and phase-dependent morphogenesis, but the control of SPL output remains poorly understood. In Arabidopsis thaliana the spatial pattern of trichome is a hallmark of phase transition and governed by SPLs. Here, by dissecting the regulatory network controlling trichome formation on stem, we show that the miR171-targeted lost meristems 1 (LOM1), LOM2 and LOM3, encoding GRAS family members previously known to maintain meristem cell polarity, are involved in regulating the SPL activity. Reduced LOM abundance by overexpression of miR171 led to decreased trichome density on stems and floral organs, and conversely, constitutive expression of the miR171-resistant LOM (rLOM) genes promoted trichome production, indicating that LOMs enhance trichome initiation at reproductive stage. Genetic analysis demonstrated LOMs shaping trichome distribution is dependent on SPLs, which positively regulate trichome repressor genes TRICHOMELESS 1 (TCL1) and TRIPTYCHON (TRY). Physical interaction between the N-terminus of LOMs and SPLs underpins the repression of SPL activity. Importantly, other growth and developmental events, such as flowering, are also modulated by LOM-SPL interaction, indicating a broad effect of the LOM-SPL interplay. Furthermore, we provide evidence that MIR171 gene expression is regulated by its targeted LOMs, forming a homeostatic feedback loop. Our data uncover an antagonistic interplay between the two timing miRNAs in controlling plant growth, phase transition and morphogenesis through direct interaction of their targets.


Assuntos
Arabidopsis/genética , MicroRNAs/genética , Tricomas/genética , Proteínas de Arabidopsis/genética , Polaridade Celular/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Morfogênese/genética , Proteínas Nucleares/genética , Caules de Planta/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
8.
Plant Biotechnol J ; 14(9): 1925-35, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26914579

RESUMO

Plant engineered to express double-stranded RNA (dsRNA) can target the herbivorous insect gene for silencing. Although mounting evidence has emerged to support feasibility of this new pest control technology, field application is slow largely due to lack of potent targets. Here, we show that suppression of the gene encoding NDUFV2, a subunit of mitochondrial complex I that catalyses NADH dehydrogenation in respiratory chain, was highly lethal to insects. Feeding cotton bollworm (Helicoverpa armigera) larvae with transgenic cotton tissues expressing NDUFV2 dsRNA led to mortality up to 80% within 5 days, and almost no larvae survived after 7 days of feeding, due to the altered mitochondrial structure and activity. Transcriptome comparisons showed a drastic repression of dopa decarboxylase genes. Reciprocal assays with Asian corn borer (Ostrinia furnacalis), another lepidopteran species, revealed the sequence-specific effect of NDUFV2 suppression. Furthermore, the hemipteran lugus Apolygus lucorum was also liable to NDUFV2 repression. These data demonstrate that the mitochondrial complex I is a promising target with both sequence specificity and wide applicability for the development of new-generation insect-proof crops.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Insetos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Animais , Complexo I de Transporte de Elétrons/genética , Proteínas de Insetos/genética , Larva/genética , Larva/metabolismo , Controle de Pragas , Plantas Geneticamente Modificadas/genética , Interferência de RNA/fisiologia
9.
Plant Cell ; 24(6): 2635-48, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22669881

RESUMO

Arabidopsis thaliana flowers emit volatile terpenes, which may function in plant-insect interactions. Here, we report that Arabidopsis MYC2, a basic helix-loop-helix transcription factor, directly binds to promoters of the sesquiterpene synthase genes TPS21 and TPS11 and activates their expression. Expression of TPS21 and TPS11 can be induced by the phytohormones gibberellin (GA) and jasmonate (JA), and both inductions require MYC2. The induction of TPS21 and TPS11 results in increased emission of sesquiterpene, especially (E)-ß-caryophyllene. DELLAs, the GA signaling repressors, negatively affect sesquiterpene biosynthesis, as the sesquiterpene synthase genes were repressed in plants overaccumulating REPRESSOR OF GA1-3 (RGA), one of the Arabidopsis DELLAs, and upregulated in a penta DELLA-deficient mutant. Yeast two-hybrid and coimmunoprecipitation assays demonstrated that DELLAs, represented by RGA, directly interact with MYC2. In yeast cells, the N terminus of MYC2 was responsible for binding to RGA. MYC2 has been proposed as a major mediator of JA signaling and crosstalk with abscisic acid, ethylene, and light signaling pathways. Our results demonstrate that MYC2 is also connected to GA signaling in regulating a subset of genes. In Arabidopsis inflorescences, it integrates both GA and JA signals into transcriptional regulation of sesquiterpene synthase genes and promotes sesquiterpene production.


Assuntos
Alquil e Aril Transferases/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Repressoras/metabolismo , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Giberelinas/farmacologia , Inflorescência/genética , Inflorescência/metabolismo , Luz , Mutação , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sesquiterpenos Policíclicos , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
10.
Pest Manag Sci ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587094

RESUMO

BACKGROUND: The fall armyworm (FAW, Spodoptera frugiperda (J.E. Smith)) is a polyphagous agricultural pest with rapidly evolving adaptations to host plants. We found the oral secretion (OS) of FAW from different plants influences plant defense response differentially, suggesting its role in adapting to host plants. However, the protein expression profile of FAW OS respond to different plants is largely unknown. RESULTS: Here, from the mass spectrometry assay, we identified a total of 256 proteins in the OS of FAW fed on cotton (Gossypium hirsutum L.), tobacco (Nicotiana benthamiana Domin), maize (Zea mays L.) and artificial diet. The FAW OS primarily comprise of 60 proteases, 32 esterases and 92 non-enzymatic proteins. It displays high plasticity across different diets. We found that more than half of the esterases are lipases which have been reported as insect elicitors to enhance plant defense response. The lipase accumulation in cotton-fed larvae was the highest, followed by maize-fed larvae. In the presence of lipase inhibitors, the enhanced induction on defense genes in wounded leaves by OS was attenuated. However, the putative effectors were most highly accumulated in the OS from FAW larvae fed on maize compared to those fed on other diets. We identified that one of them (VRLP4) reduces the OS-mediated induction on defense genes in wounded leaves. CONCLUSION: Together, our investigation presents the proteomic landscape of the OS of FAW influenced by different diets and reveals diet-mediated plasticity of OS is involved in FAW adaptation to host plants. © 2024 Society of Chemical Industry.

11.
Adv Sci (Weinh) ; : e2403059, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840438

RESUMO

Plants have evolved diverse defense mechanisms encompassing physical and chemical barriers. Cotton pigment glands are known for containing various defense metabolites, but the precise regulation of gland size to modulate defense compound levels remains enigmatic. Here, it is discovered that the VQ domain-containing protein JAVL negatively regulates pigment gland size and the biosynthesis of defense compounds, while the MYC2-like transcription factor GoPGF has the opposite effect. Notably, GoPGF directly activates the expression of JAVL, whereas JAVL suppresses GoPGF transcription, establishing a negative feedback loop that maintains the expression homeostasis between GoPGF and JAVL. Furthermore, it is observed that JAVL negatively regulates jasmonate levels by inhibiting the expression of jasmonate biosynthetic genes and interacting with GoPGF to attenuate its activation effects, thereby maintaining homeostatic regulation of jasmonate levels. The increased expression ratio of GoPGF to JAVL leads to enlarged pigment glands and elevated jasmonates and defense compounds, enhancing insect and pathogen resistance in cotton. These findings unveil a new mechanism for regulating gland size and secondary metabolites biosynthesis, providing innovative strategies for strengthening plant defense.

12.
Plant Mol Biol ; 83(1-2): 119-29, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23460027

RESUMO

Oral ingestion of plant-expressed double stranded RNA (dsRNA) triggers target gene suppression in insect. An important step of this process is the transmission of dsRNA from plant to midgut cells. Insect peritrophic matrix (PM) presents a barrier that prevents large molecules from entering midgut cells. Here, we show that uptake of plant cysteine proteases, such as GhCP1 from cotton (Gossypium hirsutum) and AtCP2 from Arabidopsis, by cotton bollworm (Helicoverpa armigera) larvae resulted in attenuating the PM. When GhCP1 or AtCP2 pre-fed larvae were transferred to gossypol-containing diet, the bollworm accumulated higher content of gossypol in midgut. Larvae previously ingested GhCP1 or AtCP2 were more susceptible to infection by Dendrolimus punctatus cytoplasmic polyhedrosis virus (DpCPV), a dsRNA virus. Furthermore, the pre-fed larvae exhibited enhanced RNAi effects after ingestion of the dsRNA-expressing plant. The bollworm P450 gene CYP6AE14 is involved in the larval tolerance to gossypol; cotton plants producing dsRNA of CYP6AE14 (dsCYP6AE14) were more resistant to bollworm feeding (Mao et al. in Transgenic Res 20:665-673, 2011). We found that cotton plants harboring both 35S:dsCYP6AE14 and 35S:GhCP1 were better protected from bollworm than either of the single-transgene lines. Our results demonstrate that plant cysteine proteases, which have the activity of increasing PM permeability, can be used to improve the plant-mediated RNAi against herbivorous insects.


Assuntos
Cisteína Proteases/metabolismo , Gossypium/enzimologia , Mariposas/fisiologia , Interferência de RNA , RNA de Plantas/metabolismo , RNA Viral/metabolismo , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Permeabilidade da Membrana Celular , Cisteína Proteases/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Gossypium/genética , Gossypium/virologia , Gossipol/metabolismo , Gossipol/farmacologia , Herbivoria , Larva/fisiologia , Larva/virologia , Mariposas/virologia , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Folhas de Planta/virologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA de Plantas/genética , RNA Viral/genética , Reoviridae/genética , Reoviridae/patogenicidade
13.
Nat Commun ; 14(1): 6551, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848424

RESUMO

Insects and pathogens release effectors into plant cells to weaken the host defense or immune response. While the imports of some bacterial and fungal effectors into plants have been previously characterized, the mechanisms of how caterpillar effectors enter plant cells remain a mystery. Using live cell imaging and real-time protein tracking, we show that HARP1, an effector from the oral secretions of cotton bollworm (Helicoverpa armigera), enters plant cells via protein-mediated endocytosis. The entry of HARP1 into a plant cell depends on its interaction with vesicle trafficking components including CTL1, PATL2, and TET8. The plant defense hormone jasmonate (JA) restricts HARP1 import by inhibiting endocytosis and HARP1 loading into endosomes. Combined with the previous report that HARP1 inhibits JA signaling output in host plants, it unveils that the effector and JA establish a defense and counter-defense loop reflecting the robust arms race between plants and insects.


Assuntos
Mariposas , Plantas , Animais , Plantas/metabolismo , Mariposas/metabolismo , Insetos/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Endocitose , Regulação da Expressão Gênica de Plantas
14.
Mol Ecol ; 21(17): 4371-85, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22515600

RESUMO

Cotton plants accumulate phytotoxins, including gossypol and related sesquiterpene aldehydes, to resist insect herbivores and pathogens. To counteract these defensive plant secondary metabolites, cotton bollworms (Helicoverpa armigera) elevate their production of detoxification enzymes, including cytochrome P450 monooxygenases (P450s). Besides their tolerance to phytotoxin, cotton bollworms have quickly developed resistance to deltamethrin, a widely used pyrethroid insecticide in cotton field. However, the relationship between host plant secondary metabolites and bollworm insecticide resistance is poorly understood. Here, we show that exogenously expressed CYP6AE14, a gossypol-inducible P450 of cotton bollworm, has epoxidation activity towards aldrin, an organochlorine insecticide, indicating that gossypol-induced P450s participate in insecticide metabolism. Gossypol-ingested cotton bollworm larvae showed higher midgut P450 enzyme activities and exhibited enhanced tolerance to deltamethrin. The midgut transcripts of bollworm larvae administrated with different phytochemicals and deltamethrin were then compared by microarray analysis, which showed that gossypol and deltamethrin induced the most similar P450 expression profiles. Gossypol-induced P450s exhibited high divergence and at least five of them (CYP321A1, CYP9A12, CYP9A14, CYP6AE11 and CYP6B7) contributed to cotton bollworm tolerance to deltamethrin. Knocking down one of them, CYP9A14, by plant-mediated RNA interference (RNAi) rendered the larvae more sensitive to the insecticide. These data demonstrate that generalist insects can take advantage of secondary metabolites from their major host plants to elaborate defence systems against other toxic chemicals, and impairing this defence pathway by RNAi holds a potential for reducing the required dosages of agrochemicals in pest control.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Gossipol/farmacologia , Resistência a Inseticidas/genética , Mariposas/genética , Aldrina , Animais , Gossypium , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Mariposas/efeitos dos fármacos , Mariposas/enzimologia , Nitrilas , Análise de Sequência com Séries de Oligonucleotídeos , Piretrinas , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
15.
J Integr Plant Biol ; 54(10): 703-12, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22947222

RESUMO

Plant secondary metabolites play critical roles in plant-environment interactions. They are synthesized in different organs or tissues at particular developmental stages, and in response to various environmental stimuli, both biotic and abiotic. Accordingly, corresponding genes are regulated at the transcriptional level by multiple transcription factors. Several families of transcription factors have been identified to participate in controlling the biosynthesis and accumulation of secondary metabolites. These regulators integrate internal (often developmental) and external signals, bind to corresponding cis-elements--which are often in the promoter regions--to activate or repress the expression of enzyme-coding genes, and some of them interact with other transcription factors to form a complex. In this review, we summarize recent research in these areas, with an emphasis on newly-identified transcription factors and their functions in metabolism regulation.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Alcaloides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Plantas/genética , Terpenos/metabolismo , Fatores de Transcrição/genética
16.
Transgenic Res ; 20(3): 665-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20953975

RESUMO

RNA interference (RNAi) plays an important role in regulating gene expression in eukaryotes. Previously, we generated Arabidopsis and tobacco plants expressing double-stranded RNA (dsRNA) targeting a cotton bollworm (Helicoverpa armigera) P450 gene, CYP6AE14. Bollworms fed on transgenic dsCYP6AE14 plants showed suppressed CYP6AE14 expression and reduced growth on gossypol-containing diet (Mao et al., in Nat Biotechnol 25: 1307-1313, 2007). Here we report generation and analysis of dsRNA-expressing cotton (Gossypium hirsutum) plants. Bollworm larvae reared on T2 plants of the ds6-3 line exhibited drastically retarded growth, and the transgenic plants were less damaged by bollworms than the control. Quantitative reverse-transcription polymerase chain reaction (RT-PCR) showed that the CYP6AE14 expression level was reduced in the larvae as early as 4 h after feeding on the transgenic plants; accordingly, the CYP6AE14 protein level dropped. These results demonstrated that transgenic cotton plants expressing dsCYP6AE14 acquired enhanced resistance to cotton bollworms, and that RNAi technology can be used for engineering insect-proof cotton cultivar.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Gossypium/genética , Lepidópteros/fisiologia , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , RNA de Cadeia Dupla/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Gossypium/enzimologia , Gossypium/parasitologia , Gossipol/metabolismo , Gossipol/farmacologia , Larva/efeitos dos fármacos , Larva/fisiologia , Lepidópteros/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/parasitologia , Interferência de RNA , RNA de Cadeia Dupla/genética
17.
Front Plant Sci ; 12: 700555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326858

RESUMO

In Arabidopsis, basic helix-loop-helix transcription factors (TFs) MYC2, MYC3, and MYC4 are involved in many biological processes, such as defense against insects. We found that despite functional redundancy, MYC-related mutants displayed different resistance to cotton bollworm (Helicoverpa armigera). To screen out the most likely genes involved in defense against insects, we analyzed the correlation of gene expression with cotton bollworm resistance in wild-type (WT) and MYC-related mutants. In total, the expression of 94 genes in untreated plants and 545 genes in wounded plants were strongly correlated with insect resistance, and these genes were defined as MGAIs (MYC-related genes against insects). MYC3 had the greatest impact on the total expression of MGAIs. Gene ontology (GO) analysis revealed that besides the biosynthesis pathway of glucosinolates (GLSs), MGAIs, which are well-known defense compounds, were also enriched in flavonoid biosynthesis. Moreover, MYC3 dominantly affected the gene expression of flavonoid biosynthesis. Weighted gene co-expression network analysis (WGCNA) revealed that AAE18, which is involved in activating auxin precursor 2,4-dichlorophenoxybutyric acid (2,4-DB) and two other auxin response genes, was highly co-expressed with flavonoid biosynthesis genes. With wounding treatment, the WT plants exhibited better growth performance than chalcone synthase (CHS), which was defective in flavonoid biosynthesis. The data demonstrated dominant contributions of MYC3 to cotton bollworm resistance and imply that flavonoids might alleviate the growth inhibition caused by wounding in Arabidopsis.

18.
Nat Biotechnol ; 25(11): 1307-13, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17982444

RESUMO

We identify a cytochrome P450 gene (CYP6AE14) from cotton bollworm (Helicoverpa armigera), which permits this herbivore to tolerate otherwise inhibitory concentrations of the cotton metabolite, gossypol. CYP6AE14 is highly expressed in the midgut and its expression correlates with larval growth when gossypol is included in the diet. When larvae are fed plant material expressing double-stranded RNA (dsRNA) specific to CYP6AE14, levels of this transcript in the midgut decrease and larval growth is retarded. Both effects are more dramatic in the presence of gossypol. As a glutathione-S-transferase gene (GST1) is silenced in GST1 dsRNA-expressing plants, feeding insects plant material expressing dsRNA may be a general strategy to trigger RNA interference and could find applications in entomological research and field control of insect pests.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Gossipol/toxicidade , Proteínas de Insetos/antagonistas & inibidores , Lepidópteros/enzimologia , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/parasitologia , Interferência de RNA , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Sistema Enzimático do Citocromo P-450/genética , Digestão , Resistência a Medicamentos/genética , Inativação Gênica , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/genética , Gossypium/genética , Gossypium/parasitologia , Proteínas de Insetos/genética , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Lepidópteros/efeitos dos fármacos , Lepidópteros/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Nicotiana/genética , Nicotiana/parasitologia
19.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-32226612

RESUMO

Acute and precise signal perception and transduction are essential for plant defense against insects. Insect elicitors-that is, the biologically active molecules from insects' oral secretion (which contains regurgitant and saliva), frass, ovipositional fluids, and the endosymbionts-are recognized by plants and subsequently induce a local or systematic defense response. On the other hand, insects secrete various types of effectors to interfere with plant defense at multiple levels for better adaptation. Jasmonate is a main regulator involved in plant defense against insects and integrates with multiple pathways to make up the intricate defense network. Jasmonate signaling is strictly regulated in plants to avoid the hypersensitive defense response and seems to be vulnerable to assault by insect effectors at the same time. Here, we summarize recently identified elicitors, effectors, and their target proteins in plants and discuss their underlying molecular mechanisms.


Assuntos
Insetos , Plantas , Animais , Herbivoria , Transdução de Sinais
20.
Front Plant Sci ; 11: 573131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072149

RESUMO

The green mirid bug (Apolygus lucorum) and the cotton bollworm (Helicoverpa armigera) are both preferred to live on cotton but cause different symptoms, suggesting specialized responses of cotton to the two insects. In this study, we investigated differential molecular mechanisms underlying cotton plant defenses against A. lucorum and H. armigera via transcriptomic analyses. At the transcription level, jasmonate (JA) signaling was dominated in defense against H. armigera whereas salicylic acid (SA) signaling was more significant in defense against A. lucorum. A set of pathogenesis-related (PR) genes and protease inhibitor genes were differentially induced by the two insects. Insect infestations also had an impact on alternative splicing (AS), which was altered more significantly by the H. armigera than A. lucorum. Interestingly, most differential AS (DAS) genes had no obvious change at the transcription level. GO analysis revealed that biological process termed "RNA splicing" and "cellular response to abiotic stimulus" were enriched only in DAS genes from the H. armigera infested samples. Furthermore, insect infestations induced the retained intron of GhJAZs transcripts, which produced a truncated protein lacking the intact Jas motif. Taken together, our data demonstrate that the specialized cotton response to different insects is regulated by gene transcription and AS as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA