Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338464

RESUMO

Human malignant melanoma and other solid cancers are largely driven by the inactivation of tumor suppressor genes and angiogenesis. Conventional treatments for cancer (surgery, radiation therapy, and chemotherapy) are employed as first-line treatments for solid cancers but are often ineffective as monotherapies due to resistance and toxicity. Thus, targeted therapies, such as bevacizumab, which targets vascular endothelial growth factor, have been approved by the US Food and Drug Administration (FDA) as angiogenesis inhibitors. The downregulation of the tumor suppressor, phosphatase tensin homolog (PTEN), occurs in 30-40% of human malignant melanomas, thereby elucidating the importance of the upregulation of PTEN activity. Phosphatase tensin homolog (PTEN) is modulated at the transcriptional, translational, and post-translational levels and regulates key signaling pathways such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways, which also drive angiogenesis. This review discusses the inhibition of angiogenesis through the upregulation of PTEN and the inhibition of hypoxia-inducible factor 1 alpha (HIF-1-α) in human malignant melanoma, as no targeted therapies have been approved by the FDA for the inhibition of angiogenesis in human malignant melanoma. The emergence of nanocarrier formulations to enhance the pharmacokinetic profile of phytochemicals that upregulate PTEN activity and improve the upregulation of PTEN has also been discussed.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Tensinas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Genes Supressores de Tumor
2.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557842

RESUMO

In this study, 10 essential oils (EOs), from nine plants (Cinnamomum camphora, Curcuma longa, Citrus aurantium, Morinda citrifolia, Petroselinum crispum, Plectranthus amboinicus, Pittosporum senacia, Syzygium coriaceum, and Syzygium samarangense) were assessed for their antimicrobial, antiaging and antiproliferative properties. While only S. coriaceum, P. amboinicus (MIC: 0.50 mg/mL) and M. citrifolia (MIC: 2 mg/mL) EOs showed activity against Cutibacterium acnes, all EOs except S. samarangense EO demonstrated activity against Mycobacterium smegmatis (MIC: 0.125-0.50 mg/mL). The EOs were either fungistatic or fungicidal against one or both tested Candida species with minimum inhibitory/fungicidal concentrations of 0.016-32 mg/mL. The EOs also inhibited one or both key enzymes involved in skin aging, elastase and collagenase (IC50: 89.22-459.2 µg/mL; 0.17-0.18 mg/mL, respectively). Turmerone, previously identified in the C. longa EO, showed the highest binding affinity with the enzymes (binding energy: -5.11 and -6.64 kcal/mol). Only C. aurantium leaf, C. longa, P. amboinicus, P. senacia, S. coriaceum, and S. samarangense EOs were cytotoxic to the human malignant melanoma cells, UCT-MEL1 (IC50: 88.91-277.25 µg/mL). All the EOs, except M. citrifolia EO, were also cytotoxic to the human keratinocytes non-tumorigenic cells, HaCat (IC50: 33.73-250.90 µg/mL). Altogether, some interesting therapeutic properties of the EOs of pharmacological/cosmeceutical interests were observed, which warrants further investigations.


Assuntos
Cosmecêuticos , Óleos Voláteis , Plantas Medicinais , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Candida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA