Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(13): e2107391119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312356

RESUMO

Connexin 43 (Cx43) gap junctions and hemichannels mediate astrocyte intercellular communication in the central nervous system under normal conditions and contribute to astrocyte-mediated neurotoxicity in amyotrophic lateral sclerosis (ALS). Here, we show that astrocyte-specific knockout of Cx43 in a mouse model of ALS slows disease progression both spatially and temporally, provides motor neuron (MN) protection, and improves survival. In addition, Cx43 expression is up-regulated in human postmortem tissue and cerebrospinal fluid from ALS patients. Using human induced pluripotent stem cell­derived astrocytes (hiPSC-A) from both familial and sporadic ALS, we establish that Cx43 is up-regulated and that Cx43-hemichannels are enriched at the astrocyte membrane. We also demonstrate that the pharmacological blockade of Cx43-hemichannels in ALS astrocytes using GAP 19, a mimetic peptide blocker, and tonabersat, a clinically tested small molecule, provides neuroprotection of hiPSC-MN and reduces ALS astrocyte-mediated neuronal hyperexcitability. Extending the in vitro application of tonabersat with chronic administration to SOD1G93A mice results in MN protection with a reduction in reactive astrocytosis and microgliosis. Taking these data together, our studies identify Cx43 hemichannels as conduits of astrocyte-mediated disease progression and a pharmacological target for disease-modifying ALS therapies.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Astrócitos , Conexina 43/genética , Humanos , Neurônios Motores
2.
BMC Med ; 22(1): 74, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369520

RESUMO

BACKGROUND: Neuregulin-1 (NRG1) is implicated in both cancer and neurologic diseases such as amyotrophic lateral sclerosis (ALS); however, to date, there has been little cross-field discussion between neurology and oncology in regard to these genes and their functions. MAIN BODY: Approximately 0.15-0.5% of cancers harbor NRG1 fusions that upregulate NRG1 activity and hence that of the cognate ERBB3/ERBB4 (HER3/HER4) receptors; abrogating this activity with small molecule inhibitors/antibodies shows preliminary tissue-agnostic anti-cancer activity. Notably, ERBB/HER pharmacologic suppression is devoid of neurologic toxicity. Even so, in ALS, attenuated ERBB4/HER4 receptor activity (due to loss-of-function germline mutations or other mechanisms in sporadic disease) is implicated; indeed, ERBB4/HER4 is designated ALS19. Further, secreted-type NRG1 isoforms may be upregulated (perhaps via a feedback loop) and could contribute to ALS pathogenesis through aberrant glial cell stimulation via enhanced activity of other (e.g., ERBB1-3/HER1-3) receptors and downstream pathways. Hence, pan-ERBB inhibitors, already in use for cancer, may be agents worthy of testing in ALS. CONCLUSION: Common signaling cascades between cancer and ALS may represent novel therapeutic targets for both diseases.


Assuntos
Esclerose Lateral Amiotrófica , Neoplasias , Neuregulina-1 , Receptor ErbB-4 , Humanos , Esclerose Lateral Amiotrófica/genética , Neoplasias/genética , Neuregulina-1/genética , Neuregulina-1/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Transdução de Sinais
3.
N Engl J Med ; 383(2): 109-119, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640130

RESUMO

BACKGROUND: Tofersen is an antisense oligonucleotide that mediates the degradation of superoxide dismutase 1 (SOD1) messenger RNA to reduce SOD1 protein synthesis. Intrathecal administration of tofersen is being studied for the treatment of amyotrophic lateral sclerosis (ALS) due to SOD1 mutations. METHODS: We conducted a phase 1-2 ascending-dose trial evaluating tofersen in adults with ALS due to SOD1 mutations. In each dose cohort (20, 40, 60, or 100 mg), participants were randomly assigned in a 3:1 ratio to receive five doses of tofersen or placebo, administered intrathecally for 12 weeks. The primary outcomes were safety and pharmacokinetics. The secondary outcome was the change from baseline in the cerebrospinal fluid (CSF) SOD1 concentration at day 85. Clinical function and vital capacity were measured. RESULTS: A total of 50 participants underwent randomization and were included in the analyses; 48 participants received all five planned doses. Lumbar puncture-related adverse events were observed in most participants. Elevations in CSF white-cell count and protein were reported as adverse events in 4 and 5 participants, respectively, who received tofersen. Among participants who received tofersen, one died from pulmonary embolus on day 137, and one from respiratory failure on day 152; one participant in the placebo group died from respiratory failure on day 52. The difference at day 85 in the change from baseline in the CSF SOD1 concentration between the tofersen groups and the placebo group was 2 percentage points (95% confidence interval [CI], -18 to 27) for the 20-mg dose, -25 percentage points (95% CI, -40 to -5) for the 40-mg dose, -19 percentage points (95% CI, -35 to 2) for the 60-mg dose, and -33 percentage points (95% CI, -47 to -16) for the 100-mg dose. CONCLUSIONS: In adults with ALS due to SOD1 mutations, CSF SOD1 concentrations decreased at the highest concentration of tofersen administered intrathecally over a period of 12 weeks. CSF pleocytosis occurred in some participants receiving tofersen. Lumbar puncture-related adverse events were observed in most participants. (Funded by Biogen; ClinicalTrials.gov number, NCT02623699; EudraCT number, 2015-004098-33.).


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos/administração & dosagem , Superóxido Dismutase-1/líquido cefalorraquidiano , Adulto , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/genética , Progressão da Doença , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Cefaleia/induzido quimicamente , Humanos , Injeções Espinhais/efeitos adversos , Filamentos Intermediários , Leucocitose/induzido quimicamente , Masculino , Pessoa de Meia-Idade , Mutação , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos/farmacocinética , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/farmacocinética , Superóxido Dismutase-1/genética , Capacidade Vital
4.
Stem Cells ; 40(1): 2-13, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511862

RESUMO

The degeneration of motor neurons is a pathological hallmark of motor neuron diseases (MNDs), but emerging evidence suggests that neuronal vulnerability extends well beyond this cell subtype. The ability to assess motor function in the clinic is limited to physical examination, electrophysiological measures, and tissue-based or neuroimaging techniques which lack the resolution to accurately assess neuronal dysfunction as the disease progresses. Spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS) are all MNDs with devastating clinical outcomes that contribute significantly to disease burden as patients are no longer able to carry out normal activities of daily living. The critical need to accurately assess the cause and progression of motor neuron dysfunction, especially in the early stages of those diseases, has motivated the use of human iPSC-derived motor neurons (hiPSC-MN) to study the neurobiological mechanisms underlying disease pathogenesis and to generate platforms for therapeutic discovery and testing. As our understanding of MNDs has grown, so too has our need to develop more complex in vitro models which include hiPSC-MN co-cultured with relevant non-neuronal cells in 2D as well as in 3D organoid and spheroid systems. These more complex hiPSC-derived culture systems have led to the implementation of new technologies, including microfluidics, multielectrode array, and machine learning which offer novel insights into the functional correlates of these emerging model systems.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Doença dos Neurônios Motores , Atrofia Muscular Espinal , Atividades Cotidianas , Esclerose Lateral Amiotrófica/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Doença dos Neurônios Motores/tratamento farmacológico , Doença dos Neurônios Motores/patologia , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia
5.
Muscle Nerve ; 66(6): 653-660, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35986916

RESUMO

Loss of appetite is related to undesirable loss of weight in amyotrophic lateral sclerosis (ALS) and affects up to two thirds of people with this disease. Little is known about the instruments used to measure appetite loss, its impact on quality of life (QoL), or strategies used to improve loss of appetite. In this study we aim to characterize the existing literature on the symptom of appetite loss in ALS through a systematic scoping review following the framework by Arksey and O'Malley and PRISMA guidelines. Studies assessing appetite in people with ALS (pALS) published in English and indexed on Web of Science, PubMed, and Scopus databases were included. A total of 156 full references were identified, of which 10 articles met the inclusion criteria and were eligible for data synthesis after screening. Seven unique instruments were used to assess appetite across the included studies, most commonly the Council of Nutrition Appetite Questionnaire. No studies included a subjective assessment of appetite loss. A total of 12 unique potential associated factors across five studies were identified. QoL was measured in seven studies using nine different QoL measurement tools. Few studies measure appetite in pALS and there is no consensus on the assessment tool used. Few studies evaluated the impact of appetite as a symptom on QoL. Furthermore, the heterogeneity of outcomes and risk factors of the existing data limit the clinical application of these findings. Future studies are needed to guide clinical management and interventions for people with ALS and appetite loss.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Qualidade de Vida , Apetite , Inquéritos e Questionários , Estado Nutricional
6.
J Neurosci ; 40(10): 2015-2024, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988061

RESUMO

Neural stem cells (NSCs) persist throughout life in the subventricular zone (SVZ) neurogenic niche of the lateral ventricles as Type B1 cells in adult mice. Maintaining this population of NSCs depends on the balance between quiescence and self-renewing or self-depleting cell divisions. Interactions between B1 cells and the surrounding niche are important in regulating this balance, but the mechanisms governing these processes have not been fully elucidated. The cytoplasmic FMRP-interacting protein (Cyfip1) regulates apical-basal polarity in the embryonic brain. Loss of Cyfip1 during embryonic development in mice disrupts the embryonic niche and affects cortical neurogenesis. However, a direct role for Cyfip1 in the regulation of adult NSCs has not been established. Here, we demonstrate that Cyfip1 expression is preferentially localized to B1 cells in the adult mouse SVZ. Loss of Cyfip1 in the embryonic mouse brain results in altered adult SVZ architecture and expansion of the adult B1 cell population at the ventricular surface. Furthermore, acute deletion of Cyfip1 in adult NSCs results in a rapid change in adherens junction proteins as well as increased proliferation and number of B1 cells at the ventricular surface. Together, these data indicate that Cyfip1 plays a critical role in the formation and maintenance of the adult SVZ niche; furthermore, deletion of Cyfip1 unleashes the capacity of adult B1 cells for symmetric renewal to increase the adult NSC pool.SIGNIFICANCE STATEMENT Neural stem cells (NSCs) persist in the subventricular zone of the lateral ventricles in adult mammals, and the size of this population is determined by the balance between quiescence and self-depleting or renewing cell division. The mechanisms regulating these processes are not fully understood. This study establishes that the cytoplasmic FMRP interacting protein 1 (Cyfip1) regulates NSC fate decisions in the adult subventricular zone and adult NSCs that are quiescent or typically undergo self-depleting divisions retain the ability to self-renew. These results contribute to our understanding of how adult NSCs are regulated throughout life and has potential implications for human brain disorders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Envelhecimento , Animais , Ventrículos Laterais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia
7.
Muscle Nerve ; 62(2): 156-166, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31899540

RESUMO

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disorder with complex biology and significant clinical heterogeneity. Many preclinical and early phase ALS clinical trials have yielded promising results that could not be replicated in larger phase 3 confirmatory trials. One reason for the lack of reproducibility may be ALS biological and clinical heterogeneity. Therefore, in this review, we explore sources of ALS heterogeneity that may reduce statistical power to evaluate efficacy in ALS trials. We also review efforts to manage clinical heterogeneity, including use of validated disease outcome measures, predictive biomarkers of disease progression, and individual clinical risk stratification. We propose that personalized prognostic models with use of predictive biomarkers may identify patients with ALS for whom a specific therapeutic strategy may be expected to be more successful. Finally, the rapid application of emerging clinical and biomarker strategies may reduce heterogeneity, increase trial efficiency, and, in turn, accelerate ALS drug development.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Variação Biológica da População , Biomarcadores , Ensaios Clínicos como Assunto/métodos , Avaliação de Resultados em Cuidados de Saúde , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Progressão da Doença , Desenvolvimento de Medicamentos , Humanos , Força Muscular , Desempenho Físico Funcional , Medicina de Precisão , Prognóstico , Reprodutibilidade dos Testes , Testes de Função Respiratória , Medição de Risco , Fala , Estimulação Magnética Transcraniana
8.
Muscle Nerve ; 62(2): 182-186, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445195

RESUMO

Coronavirus disease 2019 has created unprecedented challenges for amyotrophic lateral sclerosis (ALS) clinical care and research in the United States. Traditional evaluations for making an ALS diagnosis, measuring progression, and planning interventions rely on in-person visits that may now be unsafe or impossible. Evidence- and experience-based treatment options, such as multidisciplinary team care, feeding tubes, wheelchairs, home health, and hospice, have become more difficult to obtain and in some places are unavailable. In addition, the pandemic has impacted ALS clinical trials by impairing the ability to obtain measurements for trial eligibility, to monitor safety and efficacy outcomes, and to dispense study drug, as these also often rely on in-person visits. We review opportunities for overcoming some of these challenges through telemedicine and novel measurements. These can reoptimize ALS care and research in the current setting and during future events that may limit travel and face-to-face interactions.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Infecções por Coronavirus/epidemiologia , Acessibilidade aos Serviços de Saúde , Serviços de Assistência Domiciliar , Cuidados Paliativos na Terminalidade da Vida , Pneumonia Viral/epidemiologia , Telemedicina , Esclerose Lateral Amiotrófica/diagnóstico , Betacoronavirus , Pesquisa Biomédica , COVID-19 , Ensaios Clínicos como Assunto , Nutrição Enteral , Humanos , Pandemias , SARS-CoV-2 , Espirometria , Estados Unidos/epidemiologia , Ventiladores Mecânicos , Cadeiras de Rodas
9.
Muscle Nerve ; 61(2): 163-172, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31758557

RESUMO

INTRODUCTION: Our research aim was to develop a novel clinimetric scale sensitive enough to detect disease progression in primary lateral sclerosis (PLS). METHODS: A prototype of the PLS Functional Rating Scale (PLSFRS) was generated. Seventy-seven participants with PLS were enrolled and evaluated at 21 sites that comprised the PLSFRS study group. Participants were assessed using the PLSFRS, Neuro-Quality of Life (QoL), Schwab-England Activities of Daily Living (ADL), and the Clinical Global Impression of Change scales. Participants completed telephone assessments at 12, 24, and 48 weeks after enrollment. RESULTS: The PLSFRS demonstrated internal consistency as well as intrarater, interrater, telephone test-retest reliability, and construct validity. Significant changes in disease progression were detected at 6 and 12 months; changes measured by the PLSFRS vs the ALSFRS-R were significantly higher. DISCUSSION: The PLSFRS is a valid tool to assess the natural history of PLS in a shorter study period.


Assuntos
Doença dos Neurônios Motores/diagnóstico , Atividades Cotidianas , Adulto , Idoso , Cuidadores , Certificação , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/fisiopatologia , Doença dos Neurônios Motores/psicologia , Variações Dependentes do Observador , Qualidade de Vida , Reprodutibilidade dos Testes , Telefone
10.
Nature ; 507(7491): 195-200, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24598541

RESUMO

A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat-length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformation-dependent manner. Specifically, nucleolin, an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases.


Assuntos
Expansão das Repetições de DNA/genética , Fases de Leitura Aberta/genética , Esclerose Lateral Amiotrófica/genética , Linfócitos B , Sequência de Bases , Nucléolo Celular/genética , Nucléolo Celular/patologia , DNA/genética , DNA/metabolismo , Demência Frontotemporal/genética , Quadruplex G , Células HEK293 , Humanos , Modelos Moleculares , Neurônios , Fosfoproteínas/metabolismo , RNA/biossíntese , RNA/química , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Estresse Fisiológico , Transcrição Gênica/genética , Nucleolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA