Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L37-L47, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35638643

RESUMO

Treatment of the cigarette smoke-associated lung diseases, such as chronic obstructive pulmonary disease (COPD), has largely focused on broad-spectrum anti-inflammatory therapies. However, these therapies, such as high-dose inhaled corticosteroids, enhance patient susceptibility to lung infection and exacerbation. Our objective was to assess whether the cationic host defense peptide, human ß-defensin 2 (hBD-2), can simultaneously reduce pulmonary inflammation in cigarette smoke-exposed mice while maintaining immune competence during bacterial exacerbation. Mice were exposed to cigarette smoke acutely (4 days) or chronically (5 days/wk for 7 wk) and administered hBD-2 intranasally or by gavage. In a separate model of acute exacerbation, chronically exposed mice treated with hBD-2 were infected with nontypeable Haemophilus influenzae before euthanasia. In the acute exposure model, cigarette smoke-associated pulmonary neutrophilia was significantly blunted by both local and systemic hBD-2 administration. Similarly, chronically exposed mice administered hBD-2 therapeutically exhibited reduced pulmonary neutrophil infiltration and downregulated proinflammatory signaling in the lungs compared with vehicle-treated mice. Finally, in a model of acute bacterial exacerbation, hBD-2 administration effectively limited neutrophil infiltration in the lungs while markedly reducing pulmonary bacterial load. This study shows that hBD-2 treatment can significantly attenuate lung neutrophilia induced by cigarette smoke exposure while preserving immune competence and promoting an appropriate host-defense response to bacterial stimuli.


Assuntos
Pneumonia , Doença Pulmonar Obstrutiva Crônica , beta-Defensinas , Animais , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fumar , beta-Defensinas/farmacologia
2.
J Card Surg ; 37(10): 3178-3187, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35870159

RESUMO

OBJECTIVES: With the extended indications of transcatheter aortic valve (TAV) replacement (TAVR) to lower-risk patients, there is an increasing number of patients requiring surgical explantation of failed TAV. We sought to describe macroscopic and microscopic features of surgically explanted percutaneous aortic valve prostheses. METHODS: Preoperative and surgical characteristic of patients undergoing surgical explantation of TAV were retrospectively analyzed from 2007 to 2020. Surgical and pathologic features of these valves, and outcomes of the surgical valve replacement were described. RESULTS: Out of 1764 patients who underwent a TAVR procedure, 21 were operated for TAV failure. Isolated or combined indications for surgery included: significant paravalvular leak (n = 15), delayed prosthesis migration (n = 5), significant increase of trans-TAV gradients (n = 6), and endocarditis (n = 3). Mean time elapsed between TAVR and explantations was 674.9 ± 803.9 days. Macroscopic lesions found on explanted percutaneous valves were severe adhesions to the aorta (n = 10), calcifications (n = 7), leaflet thrombosis (n = 4), and vegetations (n = 3). Except for patients with endocarditis, one or more pathological lesions were found in 15 patients. Pathology analyses on these valves showed fibro-calcific degenerations (n = 12), pannus formation (n = 9), and chronic inflammation (n = 3). One patient (4.8%) died after surgical explantation, and 13 (61.9%) had concomitant procedures. The survival rate at 1 year was 94.4%. CONCLUSIONS: Microscopic findings of fibro-calcific leaflet degeneration, and pannus formation in addition to macroscopic calcification and thrombosis present early, (within a mean of 2 years) after TAVR. Further investigation with a higher number of patients and echocardiographic follow-up is warranted.


Assuntos
Estenose da Valva Aórtica , Calcinose , Endocardite , Próteses Valvulares Cardíacas , Trombose , Substituição da Valva Aórtica Transcateter , Valva Aórtica/patologia , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/etiologia , Calcinose/patologia , Endocardite/etiologia , Próteses Valvulares Cardíacas/efeitos adversos , Humanos , Estudos Retrospectivos , Fatores de Risco , Trombose/etiologia , Substituição da Valva Aórtica Transcateter/métodos , Resultado do Tratamento
3.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L391-L402, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32640840

RESUMO

Genetic predispositions and environmental exposures are regarded as the main predictors of respiratory disease development. Although the impact of dietary essential nutrient deficiencies on cardiovascular disease, obesity, and type II diabetes has been widely studied, it remains poorly explored in chronic respiratory diseases. Dietary choline and methionine deficiencies are common in the population, and their impact on pulmonary homeostasis is currently unknown. Mice were fed choline- and/or methionine-deficient diets while being exposed to room-air or cigarette smoke for up to 4 wk. Lung functions were assessed using the FlexiVent. Pulmonary transcriptional activity was assessed using gene expression microarrays and quantitative PCR. Immune cells, cytokines, and phosphatidylcholine were quantified in the bronchoalveolar lavage. In this study, we found that short-term dietary choline and/or methionine deficiencies significantly affect lung function in mice in a reversible manner. It also reduced transcriptional levels of collagens and elastin as well as pulmonary surfactant phosphatidylcholine levels. We also found that dietary choline and/or methionine deficiencies markedly interfered with the pulmonary response to cigarette smoke exposure, modulating lung function and dampening inflammation. These findings clearly show that dietary choline and/or methionine deficiencies can have dramatic pathophysiological effects on the lungs and can also affect the pathobiology of cigarette smoke-induced pulmonary alterations. Expanding our knowledge in the field of "nutri-respiratory research" may reveal a crucial role for essential nutrients in pulmonary health and disease, which may prove to be as relevant as genetic predispositions and environmental exposures.


Assuntos
Colina/farmacologia , Homeostase/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Metionina/farmacologia , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Feminino , Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Surfactantes Pulmonares/metabolismo , Fumar/efeitos adversos
4.
Am J Physiol Lung Cell Mol Physiol ; 316(4): L669-L678, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702343

RESUMO

Smoking alters pulmonary reverse lipid transport and leads to intracellular lipid accumulation in alveolar macrophages. We investigated whether stimulating reverse lipid transport with an agonist of the liver X receptor (LXR) would help alveolar macrophages limit lipid accumulation and dampen lung inflammation in response to cigarette smoke. Mice were exposed to cigarette smoke and treated intraperitoneally with the LXR agonist T0901317. Expression of lipid capture and lipid export genes was assessed in lung tissue and alveolar macrophages. Pulmonary inflammation was assessed in the bronchoalveolar lavage (BAL). Finally, cholesterol efflux capacity and pulmonary surfactant levels were determined. In room air-exposed mice, T0901317 increased the expression of lipid export genes in macrophages and the whole lung and increased cholesterol efflux capacity without inducing inflammation or affecting the pulmonary surfactant. However, cigarette smoke-exposed mice treated with T0901317 showed a marked increase in BAL neutrophils, IL-1α, C-C motif chemokine ligand 2, and granulocyte-colony-stimulating factor levels. T0901317 treatment in cigarette smoke-exposed mice failed to increase the ability of alveolar macrophages to export cholesterol and markedly exacerbated IL-1α release. Finally, T0901317 led to pulmonary surfactant depletion only in cigarette smoke-exposed mice. This study shows that hyperactivation of LXR and the associated lipid capture/export mechanisms only have minor pulmonary effects on the normal lung. However, in the context of cigarette smoke exposure, where the pulmonary surfactant is constantly oxidized, hyperactivation of LXR has dramatic adverse effects, once again showing the central role of lipid homeostasis in the pulmonary response to cigarette smoke exposure.


Assuntos
Receptores X do Fígado/agonistas , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Nicotiana/toxicidade , Surfactantes Pulmonares/metabolismo , Fumaça/efeitos adversos , Animais , Fumar Cigarros/efeitos adversos , Fumar Cigarros/genética , Fumar Cigarros/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Hidrocarbonetos Fluorados/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Sulfonamidas/farmacologia
5.
Eur Respir J ; 50(3)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28889112

RESUMO

Reverse lipid transport is critical to maintain homeostasis. Smoking causes lipid accumulation in macrophages, therefore suggesting suboptimal reverse lipid transport mechanisms. In this study, we investigated the interplay between smoking and reverse lipid transport and the consequences on smoking-induced lung and peripheral alterations.To investigate the relationship between smoking and reverse lipid transport, we used a clinical lung gene expression dataset and a mouse model of cigarette smoke exposure. We also used ApoA-1-/- mice, with reduced reverse lipid transport capacity, and a recombinant ApoA-1 Milano/phospholipid complex (MDCO-216) to boost reverse lipid transport. Cellular and functional analyses were performed on the lungs and impact on body composition was also assessed.Smoking affects pulmonary expression of abca1, abcg1, apoe and scarb1 in both mice and humans, key genes involved in reverse lipid transport. In mice, the capacity of bronchoalveolar lavage fluid and serum to stimulate cholesterol efflux in macrophages was increased after a single exposure to cigarette smoke. ApoA-1-/- mice showed increased lung neutrophilia, larger macrophages and greater loss in lean mass in response to smoking, whereas treatment with MDCO-216 reduced the size of macrophages and increased the lean mass of mice exposed to cigarette smoke.Altogether, this study shows a functional interaction between smoking and reverse lipid transport, and opens new avenues for better understanding the link between metabolic and pulmonary diseases related to smoking.


Assuntos
Apolipoproteína A-I/farmacologia , Fumar Cigarros/efeitos adversos , Metabolismo dos Lipídeos , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Fosfatidilcolinas/farmacologia , Animais , Apolipoproteína A-I/genética , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Expressão Gênica , Humanos , Pulmão/metabolismo , Pneumopatias/etiologia , Pneumopatias/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Physiol Rep ; 10(2): e15146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35075822

RESUMO

Vaping is increasingly popular among the young and adult population. Vaping liquids contained in electronic cigarettes (e-cigarettes) are mainly composed of propylene glycol and glycerol, to which nicotine and flavors are added. Among several biological processes, glycerol is a metabolic substrate used for lipid synthesis in fed state as well as glucose synthesis in fasting state. We aimed to investigate the effects of glycerol e-cigarette aerosol exposure on the aspects of glycerol and glucose homeostasis. Adult and young male and female mice were exposed to e-cigarette aerosols with glycerol as vaping liquid using an established whole-body exposure system. Mice were exposed acutely (single 2-h exposure) or chronically (2 h/day, 5 days/week for 9 weeks). Circulating glycerol and glucose levels were assessed and glycerol as well as glucose tolerance tests were performed. The liver was also investigated to assess changes in the histology, lipid content, inflammation, and stress markers. Lung functions were also assessed as well as hepatic mRNA expression of genes controlling the circadian rhythm. Acute exposure to glycerol aerosols generated by an e-cigarette increased circulating glycerol levels in female mice. Increased hepatic triglyceride and phosphatidylcholine concentrations were observed in female mice with no increase in circulating alanine aminotransferase or evidence of inflammation, fibrosis, or endoplasmic reticulum stress. Chronic exposure to glycerol e-cigarette aerosols mildly impacted glucose tolerance test in young female and male mice. Fasting glycerol, glucose, and insulin remained unchanged. Increased pulmonary resistance was observed in young male mice. Taken together, this study shows that the glycerol contained in vaping liquids can affect the liver as well as the aspects of glucose and glycerol homeostasis. Additional work is required to translate these observations to humans and determine the biological and potential pathological impacts of these findings.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Animais , Feminino , Glicerol/farmacologia , Homeostase , Fígado , Masculino , Camundongos , Vaping/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA