Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Development ; 146(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31097478

RESUMO

The development of a vascular network is essential to nourish tissues and sustain organ function throughout life. Endothelial cells (ECs) are the building blocks of blood vessels, yet our understanding of EC specification remains incomplete. Zebrafish cloche/npas4l mutants have been used broadly as an avascular model, but little is known about the molecular mechanisms of action of the Npas4l transcription factor. Here, to identify its direct and indirect target genes, we have combined complementary genome-wide approaches, including transcriptome analyses and chromatin immunoprecipitation. The cross-analysis of these datasets indicates that Npas4l functions as a master regulator by directly inducing a group of transcription factor genes that are crucial for hematoendothelial specification, such as etv2, tal1 and lmo2 We also identified new targets of Npas4l and investigated the function of a subset of them using the CRISPR/Cas9 technology. Phenotypic characterization of tspan18b mutants reveals a novel player in developmental angiogenesis, confirming the reliability of the datasets generated. Collectively, these data represent a useful resource for future studies aimed to better understand EC fate determination and vascular development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Endotélio Vascular/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neovascularização Fisiológica/genética , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Diferenciação Celular/genética , Mapeamento Cromossômico/métodos , Conjuntos de Dados como Assunto , Embrião não Mamífero , Células Endoteliais/fisiologia , Endotélio Vascular/metabolismo , Genômica/métodos , Proteínas com Domínio LIM/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Development ; 146(21)2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31597659

RESUMO

A dense local vascular network is crucial for pancreatic endocrine cells to sense metabolites and secrete hormones, and understanding the interactions between the vasculature and the islets may allow for therapeutic modulation in disease conditions. Using live imaging in two models of vascular disruption in zebrafish, we identified two distinct roles for the pancreatic vasculature. At larval stages, expression of a dominant negative version of Vegfaa (dnVegfaa) in ß-cells led to vascular and endocrine cell disruption with a minor impairment in ß-cell function. In contrast, expression of a soluble isoform of Vegf receptor 1 (sFlt1) in ß-cells blocked the formation of the pancreatic vasculature and drastically stunted glucose response, although islet architecture was not affected. Notably, these effects of dnVegfaa or sFlt1 were not observed in animals lacking vegfaa, vegfab, kdrl, kdr or flt1 function, indicating that they interfere with multiple ligands and/or receptors. In adults, disrupted islet architecture persisted in dnVegfaa-expressing animals, whereas sFlt1-expressing animals displayed large sheets of ß-cells along their pancreatic ducts, accompanied by impaired glucose tolerance in both models. Thus, our study reveals novel roles for the vasculature in patterning and function of the islet.


Assuntos
Ilhotas Pancreáticas/citologia , Pâncreas/irrigação sanguínea , Animais , Glicemia/análise , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Teste de Tolerância a Glucose , Proteínas de Fluorescência Verde/metabolismo , Ligantes , Microscopia de Fluorescência , Mutação , Pâncreas/embriologia , Transgenes , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
4.
Nature ; 535(7611): 294-8, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411634

RESUMO

Vascular and haematopoietic cells organize into specialized tissues during early embryogenesis to supply essential nutrients to all organs and thus play critical roles in development and disease. At the top of the haemato-vascular specification cascade lies cloche, a gene that when mutated in zebrafish leads to the striking phenotype of loss of most endothelial and haematopoietic cells and a significant increase in cardiomyocyte numbers. Although this mutant has been analysed extensively to investigate mesoderm diversification and differentiation and continues to be broadly used as a unique avascular model, the isolation of the cloche gene has been challenging due to its telomeric location. Here we used a deletion allele of cloche to identify several new cloche candidate genes within this genomic region, and systematically genome-edited each candidate. Through this comprehensive interrogation, we succeeded in isolating the cloche gene and discovered that it encodes a PAS-domain-containing bHLH transcription factor, and that it is expressed in a highly specific spatiotemporal pattern starting during late gastrulation. Gain-of-function experiments show that it can potently induce endothelial gene expression. Epistasis experiments reveal that it functions upstream of etv2 and tal1, the earliest expressed endothelial and haematopoietic transcription factor genes identified to date. A mammalian cloche orthologue can also rescue blood vessel formation in zebrafish cloche mutants, indicating a highly conserved role in vertebrate vasculogenesis and haematopoiesis. The identification of this master regulator of endothelial and haematopoietic fate enhances our understanding of early mesoderm diversification and may lead to improved protocols for the generation of endothelial and haematopoietic cells in vivo and in vitro.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Diferenciação Celular/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Vasos Sanguíneos/citologia , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Sequência Conservada , Epistasia Genética , Deleção de Genes , Sequências Hélice-Alça-Hélice , Hematopoese , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Mutação , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
5.
Blood ; 131(9): 963-973, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29339404

RESUMO

During development, hematopoietic stem cells (HSCs) derive from specialized endothelial cells (ECs) called hemogenic endothelium (HE) via a process called endothelial-to-hematopoietic transition (EHT). Hypoxia-inducible factor-1α (HIF-1α) has been reported to positively modulate EHT in vivo, but current data indicate the existence of other regulators of this process. Here we show that in zebrafish, Hif-2α also positively modulates HSC formation. Specifically, HSC marker gene expression is strongly decreased in hif-1aa;hif-1ab (hif-1α) and in hif-2aa;hif-2ab (hif-2α) zebrafish mutants and morphants. Moreover, live imaging studies reveal a positive role for hif-1α and hif-2α in regulating HE specification. Knockdown of hif-2α in hif-1α mutants leads to a greater decrease in HSC formation, indicating that hif-1α and hif-2α have partially overlapping roles in EHT. Furthermore, hypoxic conditions, which strongly stimulate HSC formation in wild-type animals, have little effect in the combined absence of Hif-1α and Hif-2α function. In addition, we present evidence for Hif and Notch working in the same pathway upstream of EHT. Both notch1a and notch1b mutants display impaired EHT, which cannot be rescued by hypoxia. However, overexpression of the Notch intracellular domain in ECs is sufficient to rescue the hif-1α and hif-2α morphant EHT phenotype, suggesting that Notch signaling functions downstream of the Hif pathway during HSC formation. Altogether, our data provide genetic evidence that both Hif-1α and Hif-2α regulate EHT upstream of Notch signaling.


Assuntos
Endotélio Vascular/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo , Animais , Endotélio Vascular/citologia , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Receptores Notch/genética , Peixe-Zebra/genética
6.
Arterioscler Thromb Vasc Biol ; 39(7): 1402-1418, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31242036

RESUMO

Objective- Pathological neovascularization is crucial for progression and morbidity of serious diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. While mechanisms of ongoing pathological neovascularization have been extensively studied, the initiating pathological vascular remodeling (PVR) events, which precede neovascularization remains poorly understood. Here, we identify novel molecular and cellular mechanisms of preneovascular PVR, by using the adult choriocapillaris as a model. Approach and Results- Using hypoxia or forced overexpression of VEGF (vascular endothelial growth factor) in the subretinal space to induce PVR in zebrafish and rats respectively, and by analyzing choriocapillaris membranes adjacent to choroidal neovascular lesions from age-related macular degeneration patients, we show that the choriocapillaris undergo robust induction of vascular intussusception and permeability at preneovascular stages of PVR. This PVR response included endothelial cell proliferation, formation of endothelial luminal processes, extensive vesiculation and thickening of the endothelium, degradation of collagen fibers, and splitting of existing extravascular columns. RNA-sequencing established a role for endothelial tight junction disruption, cytoskeletal remodeling, vesicle- and cilium biogenesis in this process. Mechanistically, using genetic gain- and loss-of-function zebrafish models and analysis of primary human choriocapillaris endothelial cells, we determined that HIF (hypoxia-induced factor)-1α-VEGF-A-VEGFR2 signaling was important for hypoxia-induced PVR. Conclusions- Our findings reveal that PVR involving intussusception and splitting of extravascular columns, endothelial proliferation, vesiculation, fenestration, and thickening is induced before neovascularization, suggesting that identifying and targeting these processes may prevent development of advanced neovascular disease in the future. Visual Overview- An online visual overview is available for this article.


Assuntos
Neovascularização Patológica/etiologia , Remodelação Vascular/fisiologia , Adulto , Animais , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Degeneração Macular/etiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Peixe-Zebra
7.
Proc Natl Acad Sci U S A ; 113(40): 11237-11242, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647901

RESUMO

Zebrafish have a remarkable capacity to regenerate their heart. Efficient replenishment of lost tissues requires the activation of different cell types including the epicardium and endocardium. A complex set of processes is subsequently needed to support cardiomyocyte repopulation. Previous studies have identified important determinants of heart regeneration; however, to date, how revascularization of the damaged area happens remains unknown. Here, we show that angiogenic sprouting into the injured area starts as early as 15 h after injury. To analyze the role of vegfaa in heart regeneration, we used vegfaa mutants rescued to adulthood by vegfaa mRNA injections at the one-cell stage. Surprisingly, vegfaa mutants develop coronaries and revascularize after injury. As a possible explanation for these observations, we find that vegfaa mutant hearts up-regulate the expression of potentially compensating genes. Therefore, to overcome the lack of a revascularization phenotype in vegfaa mutants, we generated fish expressing inducible dominant negative Vegfaa. These fish displayed minimal revascularization of the damaged area. In the absence of fast angiogenic revascularization, cardiomyocyte proliferation did not occur, and the heart failed to regenerate, retaining a fibrotic scar. Hence, our data show that a fast endothelial invasion allows efficient revascularization of the injured area, which is necessary to support replenishment of new tissue and achieve efficient heart regeneration. These findings revisit the model where neovascularization is considered to happen concomitant with the formation of new muscle. Our work also paves the way for future studies designed to understand the molecular mechanisms that regulate fast revascularization.


Assuntos
Coração/fisiopatologia , Revascularização Miocárdica , Regeneração/fisiologia , Peixe-Zebra/fisiologia , Animais , Biomarcadores/metabolismo , Proliferação de Células , Sobrevivência Celular , Vasos Coronários/patologia , Regulação da Expressão Gênica no Desenvolvimento , Resposta ao Choque Térmico , Mutação/genética , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Pericárdio/patologia , Ducto Torácico/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Blood ; 128(19): 2359-2366, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27557946

RESUMO

The mechanisms that allow cells to bypass anti-vascular endothelial growth factor A (VEGFA) therapy remain poorly understood. Here we use zebrafish to investigate this question and first show that vegfaa mutants display a severe vascular phenotype that can surprisingly be rescued to viability by vegfaa messenger RNA injections at the 1-cell stage. Using vegfaa mutants as an in vivo test tube, we found that zebrafish Vegfbb, Vegfd, and Pgfb can also rescue these animals to viability. Taking advantage of a new vegfr1 tyrosine kinase-deficient mutant, we determined that Pgfb rescues vegfaa mutants via Vegfr1. Altogether, these data reveal potential resistance routes against current anti-VEGFA therapies. In order to circumvent this resistance, we engineered and validated new dominant negative Vegfa molecules that by trapping Vegf family members can block vascular development. Thus, our results show that Vegfbb, Vegfd, and Pgfb can sustain vascular development in the absence of VegfA, and our newly engineered Vegf molecules expand the toolbox for basic research and antiangiogenic therapy.


Assuntos
Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Envelhecimento/patologia , Animais , Artérias/crescimento & desenvolvimento , Artérias/patologia , Diferenciação Celular , Genes Dominantes , Ligantes , Mutação/genética , Neovascularização Fisiológica , Engenharia de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética
9.
Cell Host Microbe ; 24(4): 514-525.e6, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308157

RESUMO

Mycobacterial infection leads to the formation of characteristic immune aggregates called granulomas, a process accompanied by dramatic remodeling of the host vasculature. As granuloma angiogenesis favors the infecting mycobacteria, it may be actively promoted by bacterial determinants during infection. Using Mycobacterium marinum-infected zebrafish as a model, we identify the enzyme proximal cyclopropane synthase of alpha-mycolates (PcaA) as an important bacterial determinant of granuloma-associated angiogenesis. cis-Cyclopropanation of mycobacterial mycolic acids by pcaA drives the activation of host Vegf signaling within granuloma macrophages. Cyclopropanation of the mycobacterial cell wall glycolipid trehalose dimycolate is both required and sufficient to induce robust host angiogenesis. Inducible genetic inhibition of angiogenesis and Vegf signaling during granuloma formation results in bacterial growth deficits. Together, these data reveal a mechanism by which PcaA-mediated cis-cyclopropanation of mycolic acids promotes bacterial growth and dissemination in vivo by eliciting granuloma vascularization and suggest potential approaches for host-directed therapies.


Assuntos
Proteínas de Bactérias/metabolismo , Metiltransferases/metabolismo , Mycobacterium marinum/enzimologia , Neovascularização Patológica/microbiologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Tuberculoma/microbiologia , Inibidores da Angiogênese/farmacologia , Animais , Proteínas de Bactérias/genética , Fatores Corda/metabolismo , Modelos Animais de Doenças , Humanos , Indazóis , Macrófagos/imunologia , Macrófagos/microbiologia , Metiltransferases/genética , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidade , Ácidos Micólicos/metabolismo , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Pirimidinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Transdução de Sinais , Sulfonamidas/farmacologia , Tuberculoma/imunologia , Tuberculoma/patologia , Peixe-Zebra
10.
Nat Commun ; 8: 15492, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28524872

RESUMO

Macrophages are known to interact with endothelial cells during developmental and pathological angiogenesis but the molecular mechanisms modulating these interactions remain unclear. Here, we show a role for the Hif-1α transcription factor in this cellular communication. We generated hif-1aa;hif-1ab double mutants in zebrafish, hereafter referred to as hif-1α mutants, and find that they exhibit impaired macrophage mobilization from the aorta-gonad-mesonephros (AGM) region as well as angiogenic defects and defective vascular repair. Importantly, macrophage ablation is sufficient to recapitulate the vascular phenotypes observed in hif-1α mutants, revealing for the first time a macrophage-dependent angiogenic process during development. Further substantiating our observations of vascular repair, we find that most macrophages closely associated with ruptured blood vessels are Tnfα-positive, a key feature of classically activated macrophages. Altogether, our data provide genetic evidence that Hif-1α regulates interactions between macrophages and endothelial cells starting with the mobilization of macrophages from the AGM.


Assuntos
Vasos Sanguíneos/embriologia , Células Endoteliais/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/citologia , Neovascularização Patológica/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alelos , Animais , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Microscopia Confocal , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxigênio/química , Fenótipo , Tamanho da Amostra , Transdução de Sinais , Peixe-Zebra/embriologia
11.
Elife ; 52016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27852438

RESUMO

Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs.


Assuntos
Diferenciação Celular/genética , Organogênese/genética , Medula Espinal/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas de Peixe-Zebra/genética , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Mosaicismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Transdução de Sinais/genética , Medula Espinal/irrigação sanguínea , Medula Espinal/crescimento & desenvolvimento , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA