Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(22): 11947-11953, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424103

RESUMO

Living tissues, heterogeneous at the microscale, usually scatter light. Strong scattering is responsible for the whiteness of bones, teeth, and brain and is known to limit severely the performances of biomedical optical imaging. Transparency is also found within collagen-based extracellular tissues such as decalcified ivory, fish scales, or cornea. However, its physical origin is still poorly understood. Here, we unveil the presence of a gap of transparency in scattering fibrillar collagen matrices within a narrow range of concentration in the phase diagram. This precholesteric phase presents a three-dimensional (3D) orientational order biomimetic of that in natural tissues. By quantitatively studying the relation between the 3D fibrillar network and the optical and mechanical properties of the macroscopic matrices, we show that transparency results from structural partial order inhibiting light scattering, while preserving mechanical stability, stiffness, and nonlinearity. The striking similarities between synthetic and natural materials provide insights for better understanding the occurring transparency.


Assuntos
Materiais Biomiméticos , Colágenos Fibrilares , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Biomimética/métodos , Córnea/química , Colágenos Fibrilares/síntese química , Colágenos Fibrilares/química
2.
Small ; 16(4): e1902224, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31880410

RESUMO

Extracellular matrices (ECM) rich in type I collagen exhibit characteristic anisotropic ultrastructures. Nevertheless, working in vitro with this biomacromolecule remains challenging. When processed, denaturation of the collagen molecule is easily induced in vitro avoiding proper fibril self-assembly and further hierarchical order. Here, an innovative approach enables the production of highly concentrated injectable collagen microparticles, based on collagen molecules self-assembly, thanks to the use of spray-drying process. The versatility of the process is shown by performing encapsulation of secretion products of gingival mesenchymal stem cells (gMSCs), which are chosen as a bioactive therapeutic product for their potential efficiency in stimulating the regeneration of a damaged ECM. The injection of collagen microparticles in a cell culture medium results in a locally organized fibrillar matrix. The efficiency of this approach for making easily handleable collagen microparticles for encapsulation and injection opens perspectives in active tissue regeneration and 3D bioprinted scaffolds.


Assuntos
Aerossóis , Colágeno , Células-Tronco Mesenquimais , Células Cultivadas , Matriz Extracelular/química , Gengiva/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais/química
3.
Chemistry ; 26(6): 1292-1297, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31559661

RESUMO

The regulation of the concentration of a wide range of small molecules is ubiquitous in biological systems because it enables them to adapt to the continuous changes in the environmental conditions. Herein, we report an aqueous synthetic system that provides an orchestrated, temperature and pH controlled regulation of the complexation between the cyclobis(paraquat-p-phenylene) host (BBox) and a 1,5-dialkyloxynaphthalene (DNP) guest attached to a well-defined dual responsive copolymer composed of N-isopropylacrylamide as thermoresponsive monomer and acrylic acid as pH-responsive monomer. Controlled, partial release of the BBox, enabling control over its concentration, is based on the tunable partial collapse of the copolymer. This colored supramolecular assembly is one of the first synthetic systems providing control over the concentration of a small molecule, providing great potential as both T and pH chromic materials and as a basis to develop more complex systems with molecular communication.

4.
Nature ; 505(7483): 382-5, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24336207

RESUMO

Adhesives are made of polymers because, unlike other materials, polymers ensure good contact between surfaces by covering asperities, and retard the fracture of adhesive joints by dissipating energy under stress. But using polymers to 'glue' together polymer gels is difficult, requiring chemical reactions, heating, pH changes, ultraviolet irradiation or an electric field. Here we show that strong, rapid adhesion between two hydrogels can be achieved at room temperature by spreading a droplet of a nanoparticle solution on one gel's surface and then bringing the other gel into contact with it. The method relies on the nanoparticles' ability to adsorb onto polymer gels and to act as connectors between polymer chains, and on the ability of polymer chains to reorganize and dissipate energy under stress when adsorbed onto nanoparticles. We demonstrate this approach by pressing together pieces of hydrogels, for approximately 30 seconds, that have the same or different chemical properties or rigidities, using various solutions of silica nanoparticles, to achieve a strong bond. Furthermore, we show that carbon nanotubes and cellulose nanocrystals that do not bond hydrogels together become adhesive when their surface chemistry is modified. To illustrate the promise of the method for biological tissues, we also glued together two cut pieces of calf's liver using a solution of silica nanoparticles. As a rapid, simple and efficient way to assemble gels or tissues, this method is desirable for many emerging technological and medical applications such as microfluidics, actuation, tissue engineering and surgery.


Assuntos
Adesivos/química , Hidrogéis/química , Fígado , Nanopartículas/química , Animais , Bovinos , Celulose/química , Nanotubos de Carbono/química , Polímeros/química , Resistência ao Cisalhamento , Dióxido de Silício/química , Soluções , Propriedades de Superfície , Água/química
5.
Soft Matter ; 15(43): 8653-8666, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31461108

RESUMO

Effective remote control of mechanical toughening can be achieved by using thermo-responsive grafts such as poly(N-isopropylacrylamide) (PNIPAm) in a hydrophilic covalently cross-linked polymer network. The weight ratio of PNIPAm grafts in the network may impart such a thermo-responsive mechanical reinforcement. Here, we show that the network topology - especially graft length - is likewise crucial. A series of covalently cross-linked poly(N,N-dimethylacrylamide) (PDMA) gels grafted with PNIPAm side-chains of different lengths were designed and studied on both sides of phase separation temperature Tc, at a fixed overall polymer concentration of 16.7 wt% and constant PDMA/PNIPAm weight ratio. Phase-separated PNIPAm organic micro-domains were expected to act as responsive fillers above Tc and to generate a purely organic nanocomposite (NC). In contrast to conventional NC gels where dissipative processes take place at the solid nanoparticle/matrix interface, here dissipation originates from the disruption of the filler itself by the unravelling of the PNIPAm grafts embedded in collapsed domains. Results show that PNIPAm graft length is a key parameter to enhance - reversibly and on-demand - the mechanical response. The longer the graft is, the more effective the mechanical toughening is. Interestingly, for long PNIPAm grafts, above Tc, the hydrogels combine perfect transparency together with both increased stiffness and fracture toughness (up to 150 J m-2) at constant macroscopic volume. As a proof of concept, stimuli-responsive adhesion and shape-memory properties were designed to probe the inter-chain bridging efficiency (in bulk or bridging the interface).

6.
Soft Matter ; 13(31): 5269-5282, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28676876

RESUMO

Supramolecular polymer networks have been designed on the basis of a π-electron donor/acceptor complex: naphthalene (N)/cyclobis(paraquat-p-phenylene) (CBPQT4+ = B). For this purpose, a copolymer of N,N-dimethylacrylamide P(DMA-N1), lightly decorated with 1 mol% of naphthalene pendant groups, has been studied in semi-dilute un-entangled solution in the presence of di-CBPQT4+ (BB) crosslinker type molecules. While calorimetric experiments demonstrate the quantitative binding between N and B groups up to 60 °C, the introduction of BB crosslinkers into the polymer solution gives rise to gel formation above the overlap concentration. From a comprehensive investigation of viscoelastic properties, performed at different concentrations, host/guest stoichiometric ratios and temperatures, the supramolecular hydrogels are shown to follow a Maxwellian behavior with a strong correlation of the plateau modulus and the relaxation time with the effective amount of interchain cross-linkers and their dissociation dynamics, respectively. The calculation of the dissociation rate constant of the supramolecular complex, by extrapolation of the relaxation time of the network back to the beginning of the gel regime, is discussed in the framework of theoretical and experimental works on associating polymers.

7.
Macromol Rapid Commun ; 38(17)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28718988

RESUMO

Dual thermoresponsive chemical hydrogels, combining poly(N-isopropylacrylamide) side-chains within a poly(N-acryloylglycinamide) network, are designed following a simple and versatile procedure. These hydrogels exhibit two phase transitions both at low (upper critical solution temperature) and high (lower critical solution temperature) temperatures, thereby modifying their swelling, rheological, and mechanical properties. These novel thermo-schizophrenic hydrogels pave the way for the development of thermotoughening wet materials in a broad range of temperatures.


Assuntos
Hidrogéis/química , Fenômenos Mecânicos , Temperatura , Resinas Acrílicas/química , Transição de Fase
8.
Angew Chem Int Ed Engl ; 55(45): 13974-13978, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27730718

RESUMO

Most polymeric thermoresponsive hydrogels contract upon heating beyond the lower critical solution temperature (LCST) of the polymers used. Herein, we report a supramolecular hydrogel system that shows the opposite temperature dependence. When the non-thermosesponsive hydrogel NaphtGel, containing dialkoxynaphthalene guest molecules, becomes complexed with the tetra cationic macrocyclic host CBPQT4+ , swelling occurred as a result of host-guest complex formation leading to charge repulsion between the host units, as well as an osmotic contribution of chloride counter-ions embedded in the network. The immersion of NaphtGel in a solution of poly(N-isopropylacrylamide) with tetrathiafulvalene (TTF) end groups complexed with CBPQT4+ induced positive thermoresponsive behaviour. The LCST-induced dethreading of the polymer-based pseudorotaxane upon heating led to transfer of the CBPQT4+ host and a concomitant swelling of NaphtGel. Subsequent cooling led to reformation of the TTF-based host-guest complexes in solution and contraction of the hydrogel.

9.
Soft Matter ; 11(29): 5905-17, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26119868

RESUMO

Nano-hybrid hydrogels were prepared by cross-linking polymerization of N,N-dimethylacrylamide (DMA) within a dispersion of silica nano-particles. Working at constant polymer/water ratio, the mechanical properties of hydrogels can be finely tuned by changing either the level of covalent cross-linker and/or the amount of particles that act as physical cross-linkers through specific adsorption of PDMA chains. Whatever is the cross-linking ratio (from 0 to 1 mol%), the introduction of silica nano-particles dramatically improves the mechanical behavior of hydrogels with a concomitant increase of stiffness and nominal strain at failure. The physical interactions being reversible in nature, the dynamics of the adsorption/desorption process of PDMA chains directly controls the time-dependence of the mechanical properties. Small angle neutron scattering experiments, performed in contrast matching conditions, show that silica particles, which repel themselves at short range, remain randomly dispersed during the formation of the PDMA network. Although PDMA chains readily interact with silica particles, no significant variation of the polymer concentration was observed in the vicinity of silica surfaces. Together with the time dependence of physical interactions pointed out by mechanical analyses, this result is attributed to the moderate adsorption energy of PDMA chains with silica surfaces at pH 9. From 2D SANS experiments, it was shown that strain rapidly gives rise to a non affine deformation of the hybrid network with shearing due to the transverse compression of the particles. After loading at intermediate deformation, the particles recover their initial distribution due to the covalent network that is not damaged in these conditions. That is no longer true at high deformation where residual anisotropy is observed.


Assuntos
Hidrogéis/química , Nanoestruturas/química , Polímeros/química , Dióxido de Silício/química , Acrilamidas/química , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Propriedades de Superfície
10.
Angew Chem Int Ed Engl ; 53(25): 6369-73, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24740730

RESUMO

Sutures are traumatic to soft connective tissues, such as liver or lungs. Polymer tissue adhesives require complex in vivo control of polymerization or cross-linking reactions and currently suffer from being toxic, weak, or inefficient within the wet conditions of the body. Herein, we demonstrate using Stöber silica or iron oxide nanoparticles that nanobridging, that is, adhesion by aqueous nanoparticle solutions, can be used in vivo in rats to achieve rapid and strong closure and healing of deep wounds in skin and liver. Nanoparticles were also used to fix polymer membranes to tissues even in the presence of blood flow, such as occurring after liver resection, yielding permanent hemostasis within a minute. Furthermore, medical devices and tissue engineering constructs were fixed to organs such as a beating heart. The simplicity, rapidity, and robustness of nanobridging bode well for clinical applications, surgery, and regenerative medicine.


Assuntos
Materiais Biocompatíveis/química , Desenho de Equipamento , Hemostasia/fisiologia , Nanopartículas/química , Nanopartículas/metabolismo , Adesivos Teciduais/química , Cicatrização/fisiologia , Animais , Masculino , Ratos , Água/química
11.
Biomater Adv ; 144: 213219, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481519

RESUMO

Despite the crucial role of the extracellular matrix (ECM) in the organotypic organization and function of skeletal muscles, most 3D models do not mimic its specific characteristics, namely its biochemical composition, stiffness, anisotropy, and porosity. Here, a novel 3D in vitro model of muscle ECM was developed reproducing these four crucial characteristics of the native ECM. An anisotropic hydrogel mimicking the muscle fascia was obtained thanks to unidirectional 3D printing of dense collagen with aligned collagen fibrils. The space between the different layers was tuned to generate an intrinsic network of pores (100 µm) suitable for nutrient and oxygen diffusion. By modulating the gelling conditions, the mechanical properties of the construct reached those measured in the physiological muscle ECM. This artificial matrix was thus evaluated for myoblast differentiation. The addition of large channels (600 µm) by molding permitted to create a second range of porosity suitable for cell colonization without altering the physical properties of the hydrogel. Skeletal myoblasts embedded in Matrigel®, seeded within the channels, organized in 3D, and differentiated into multinucleated myotubes. These results show that porous and anisotropic dense collagen hydrogels are promising biomaterials to model skeletal muscle ECM.


Assuntos
Colágeno , Hidrogéis , Porosidade , Hidrogéis/análise , Anisotropia , Colágeno/análise , Matriz Extracelular/química , Músculo Esquelético
12.
Sci Adv ; 9(19): eabp8351, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163599

RESUMO

Mechanical behaviors of a polymer gel are coupled with its swelling behavior. It has been known that typical hydrogels display extension-induced swelling and drying-induced stiffening, called normal mechanical-swelling coupling. In this study, we experimentally found that highly extended double-network (DN) hydrogels exhibit abnormal inverse mechanical-swelling coupling such as extension-induced deswelling and drying-induced softening. We established theoretical hyperelastic and swelling models that reproduced all the complicated mechanical and swelling trends of the highly deformed DN hydrogels. From these theoretical analyses, it is considered that the inverse mechanical-swelling coupling of a DN gel is derived from the extreme nonlinear elasticity of its first network at its ultimate deformation state. These findings contribute toward the understanding of the mechanics of rubber-like materials up to their ultimate deformation and fracture limit.

13.
Macromol Biosci ; 21(6): e2000435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33881218

RESUMO

Biological tissues rich in type I collagen exhibit specific hierarchical fibrillar structures together with remarkable mechanical toughness. However, the role of collagen alone in their mechanical response at different structural levels is not fully understood. Here, it is proposed to rationalize such challenging interplay from a materials science perspective through the subtle control of this protein self-assembly in vitro. It is relied on a spray-processing approach to readily use the collagen phase diagram and set a palette of biomimetic self-assembled collagen gels in terms of suprafibrillar organization. Their mechanical responses unveil the involvement of mechanisms occurring either at fibrillar or suprafibrillar scales. Noticeably, both modulus at early stage of deformations and tensile toughness probe the suprafibrillar organization, while durability under cyclic loading and stress relaxation reflect mechanisms at the fibril level. By changing the physicochemical environment, the interfibrillar interactions are modified toward more biomimetic mechanical responses. The possibility of making tissue-like materials with versatile compositions and toughness opens perspectives in tissue engineering.


Assuntos
Materiais Biomiméticos/química , Colágeno Tipo I/química , Engenharia Tecidual/métodos , Animais , Córnea/anatomia & histologia , Córnea/fisiologia , Módulo de Elasticidade , Géis , Humanos , Estresse Mecânico , Suínos , Resistência à Tração
14.
Adv Mater ; 33(39): e2101500, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34350646

RESUMO

Biomimetic exploration of stimuli-responsive and crack-resistant hydrogels is of great academic and practical significance, although the rational design of tough hydrogels is limited by insufficient mechanism study due to the lack of imaging techniques to "see" hydrogels at mesoscale level. A series of composite hydrogels with compartmentalized thermal response is designed by incorporating aggregation- and polarity-sensitive fluorescent probes in a poly(N-isopropylacrylamide) (PNIPAM) network grafted with poly(N,N-dimethylacrylamide) side-chains. The fluorescence technique is explored as a powerful tool to directly visualize their hydrophilicity-hydrophobicity transformation and the composition-dependent microphase separation. Based on the morphological observation and mechanical measurements, the concept of morphomechanics with a comprehensive mechanism clarification is proposed. In this regard, the thermoresponsive toughening is attributed to the formation of multiple noncovalent interactions and the conformational changes of PNIPAM chains. The enhanced fracture energy by crack multifurcation is related to the tearing-like disruption of weak interfaces between the separated phases.

15.
Adv Mater ; 31(25): e1900702, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31074929

RESUMO

Normally, a polymer network swells in a good solvent to form a gel but the gel shrinks in a poor solvent. Here, an abnormal phenomenon is reported: some hydrophobic gels significantly swell in water, reaching water content as high as 99.6 wt%. Such abnormal swelling behaviors in the nonsolvent water are observed universally for various hydrophobic organogels containing omniphilic organic solvents that have a higher affinity to water than to the hydrophobic polymers. The formation of a semipermeable skin layer due to rapid phase separation, and the asymmetric diffusion of water molecules into the gel driven by the high osmotic pressure of the organic solvent-water mixing, are found to be the reasons. As a result, the hydrophobic hydrogels have a fruit-like structure, consisting of hydrophobic skin and water-trapped micropores, to display various unique properties, such as significantly enhanced strength, surface hydrophobicity, and antidrying, despite their extremely high water content. Furthermore, the hydrophobic hydrogels exhibit selective water absorption from concentrated saline solutions and rapid water release at a small pressure like squeezing juices from fruits. These novel functions of hydrophobic hydrogels will find promising applications, e.g., as materials that can automatically take the fresh water from seawater.

16.
Adv Colloid Interface Sci ; 247: 573-588, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28754382

RESUMO

Bacterial biofilms correspond to surface-associated bacterial communities embedded in hydrogel-like matrix, in which high cell density, reduced diffusion and physico-chemical heterogeneity play a protective role and induce novel behaviors. In this review, we present recent advances on the understanding of how bacterial mechanical properties, from single cell to high-cell density community, determine biofilm tri-dimensional growth and eventual dispersion and we attempt to draw a parallel between these properties and the mechanical properties of other well-studied hydrogels and living systems.


Assuntos
Bacillus subtilis/química , Biofilmes/crescimento & desenvolvimento , Escherichia coli/química , Mecanotransdução Celular/fisiologia , Staphylococcus aureus/química , Aderência Bacteriana , Fenômenos Biomecânicos , Parede Celular/química , Fímbrias Bacterianas/química , Hidrogéis/química , Análise de Célula Única , Termodinâmica
17.
Adv Mater ; 28(28): 5857-64, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27159115

RESUMO

A novel mode of gel toughening displaying crack bifurcation is highlighted in phase-separated hydrogels. By exploring original covalent network topologies, phase-separated gels under isochoric conditions demonstrate advanced thermoresponsive mechanical properties: excellent fatigue resistance, self-healing, and remarkable fracture energies. Beyond the phase-transition temperature, the fracture proceeds by a systematic crack-bifurcation process, unreported so far in gels.

18.
Artigo em Inglês | MEDLINE | ID: mdl-24859658

RESUMO

Shear wave elastography helps physicians to characterize pathologies by assessing biomechanical properties of soft tissues. Compared with classical rheology, these techniques allow the quantification of the mechanical properties of tissues in the frequency range of hundreds of hertz. In this paper, ultrasound elastographic measurements and classical rheology are compared over a frequency range spanning five orders of magnitude [0.01 to 1200 Hz] to characterize model gels at multiple scales. Hybrid hydrogels were specially synthesized to get a fine tuning of the material dissipative response. Strain-controlled rheology (SCR) experiments were performed to get the elastic moduli G" and loss moduli G" from 0.01 Hz to 10 Hz and were confirmed by tensile tests. Transient elastography (TE from 50 to 400 Hz) and supersonic shear imaging (SSI from 200 to 1200 Hz) were used to characterize polymers at high frequency. Two different hydrogels were tested in the ultrasound setup with different concentration of scatterers. From low-frequency measurements, elastic moduli were extrapolated at high frequency and a very good correlation was obtained between SCR and TE and between SCR and SSI (r = 0.92 and r = 0.95, respectively). This paper demonstrates the capability of shear wave elastography to accurately image rheological properties of soft tissues, to differentiate soft elastic domains from viscous ones. It also gives new insights into soft material science because it provides a rheological tool in a high-frequency domain complementary to conventional rheometry.

19.
ACS Macro Lett ; 2(12): 1065-1068, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35606968

RESUMO

We studied the stress-strain relation of model dual cross-link gels having permanent cross-links and transient cross-links over an unusually wide range of extension ratios λ and strain rates ϵ̇ (or time t = (λ - 1)/ϵ̇). We propose a new analysis method and separate the stress into strain- and time-dependent terms. The strain-dependent term is derived from rubber elasticity, while the time-dependent term is due to the failure of transient cross-links and can be represented as a time-dependent shear modulus which shows the same relaxation as in small strain. The separability is applicable except for the strain stiffening regimes resulting from the finite extensibility of polymer chains. This new analysis method should have a wide applicability not only for hydrogels but also for other highly viscoelastic soft solids such as soft adhesives or living tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA