Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Brain Behav Immun ; 113: 212-227, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437817

RESUMO

Joint pain is one of the most debilitating symptoms of rheumatoid arthritis (RA) and patients frequently rate improvements in pain management as their priority. RA is hallmarked by the presence of anti-modified protein autoantibodies (AMPA) against post-translationally modified citrullinated, carbamylated and acetylated proteins. It has been suggested that autoantibody-mediated processes represent distinct mechanisms contributing to pain in RA. In this study, we investigated the pronociceptive properties of monoclonal AMPA 1325:01B09 (B09 mAb) derived from the plasma cell of an RA patient. We found that B09 mAb induces pain-like behavior in mice that is not associated with any visual, histological or transcriptional signs of inflammation in the joints, and not alleviated by non-steroidal anti-inflammatory drugs (NSAIDs). Instead, we found that B09 mAb is retained in dorsal root ganglia (DRG) and alters the expression of several satellite glia cell (SGC), neuron and macrophage-related factors in DRGs. Using mice that lack activating FcγRs, we uncovered that FcγRs are critical for the development of B09-induced pain-like behavior, and partially drive the transcriptional changes in the DRGs. Finally, we observed that B09 mAb binds SGC in vitro and in combination with external stimuli like ATP enhances transcriptional changes and protein release of pronociceptive factors from SGCs. We propose that certain RA antibodies bind epitopes in the DRG, here on SGCs, form immune complexes and activate resident macrophages via FcγR cross-linking. Our work supports the growing notion that autoantibodies can alter nociceptor signaling via mechanisms that are at large independent of local inflammatory processes in the joint.


Assuntos
Artrite Reumatoide , Autoanticorpos , Animais , Camundongos , Receptores de IgG , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Dor
2.
J Neurosci ; 35(50): 16418-30, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26674867

RESUMO

Neuropathic pain is one of the most debilitating pain conditions, yet no therapeutic strategy has been really effective for its treatment. Hence, a better understanding of its pathophysiological mechanisms is necessary to identify new pharmacological targets. Here, we report important metabolic variations in brain areas involved in pain processing in a rat model of oxaliplatin-induced neuropathy using HRMAS (1)H-NMR spectroscopy. An increased concentration of choline has been evidenced in the posterior insular cortex (pIC) of neuropathic animal, which was significantly correlated with animals' pain thresholds. The screening of 34 genes mRNA involved in the pIC cholinergic system showed an increased expression of the high-affinity choline transporter and especially the muscarinic M2 receptors, which was confirmed by Western blot analysis in oxaliplatin-treated rats and the spared nerve injury model (SNI). Furthermore, pharmacological activation of M2 receptors in the pIC using oxotremorine completely reversed oxaliplatin-induced mechanical allodynia. Consistently, systemic treatment with donepezil, a centrally active acetylcholinesterase inhibitor, prevented and reversed oxaliplatin-induced cold and mechanical allodynia as well as social interaction impairment. Intracerebral microdialysis revealed a lower level of acetylcholine in the pIC of oxaliplatin-treated rats, which was significantly increased by donepezil. Finally, the analgesic effect of donepezil was markedly reduced by a microinjection of the M2 antagonist, methoctramine, within the pIC, in both oxaliplatin-treated rats and spared nerve injury rats. These findings highlight the crucial role of cortical cholinergic neurotransmission as a critical mechanism of neuropathic pain, and suggest that targeting insular M2 receptors using central cholinomimetics could be used for neuropathic pain treatment. SIGNIFICANCE STATEMENT: Our study describes a decrease in cholinergic neurotransmission in the posterior insular cortex in neuropathic pain condition and the involvement of M2 receptors. Targeting these cortical muscarinic M2 receptors using central cholinomimetics could be an effective therapy for neuropathic pain treatment.


Assuntos
Analgésicos/farmacologia , Córtex Cerebral/fisiopatologia , Inibidores da Colinesterase/farmacologia , Indanos/farmacologia , Neuralgia/fisiopatologia , Sistema Nervoso Parassimpático/fisiopatologia , Piperidinas/farmacologia , Receptor Muscarínico M2/efeitos dos fármacos , Transmissão Sináptica , Animais , Donepezila , Expressão Gênica/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Relações Interpessoais , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Antagonistas Muscarínicos/farmacologia , Neuralgia/induzido quimicamente , Neuralgia/psicologia , Compostos Organoplatínicos , Oxaliplatina , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M2/genética
3.
Biomolecules ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830710

RESUMO

Lipids, especially lysophosphatidylcholine LPC16:0, have been shown to be involved in chronic joint pain through the activation of acid-sensing ion channels (ASIC3). The aim of the present study was to investigate the lipid contents of the synovial fluids from controls and patients suffering from chronic joint pain in order to identify characteristic lipid signatures associated with specific joint diseases. For this purpose, lipids were extracted from the synovial fluids and analyzed by mass spectrometry. Lipidomic analyses identified certain choline-containing lipid classes and molecular species as biomarkers of chronic joint pain, regardless of the pathology, with significantly higher levels detected in the patient samples. Moreover, correlations were observed between certain lipid levels and the type of joint pathologies. Interestingly, LPC16:0 levels appeared to correlate with the metabolic status of patients while other choline-containing lipids were more specifically associated with the inflammatory state. Overall, these data point at selective lipid species in synovial fluid as being strong predictors of specific joint pathologies which could help in the selection of the most adapted treatment.


Assuntos
Artropatias , Humanos , Artropatias/metabolismo , Líquido Sinovial/química , Lipídeos/análise , Biomarcadores/metabolismo , Artralgia/metabolismo
4.
Life Sci ; 327: 121826, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270172

RESUMO

AIMS: Rheumatoid arthritis is an autoimmune disease which induces chronic inflammation and increases the risk for sarcopenia and metabolic abnormalities. Nutritional strategies using omega 3 polyunsaturated fatty acids could be proposed to alleviate inflammation and improve the maintenance of lean mass. Independently, pharmacological agents targeting key molecular regulators of the pathology such as TNF alpha could be proposed, but multiple therapies are frequently necessary increasing the risk for toxicity and adverse effects. The aim of the present study was to explore if the combination of an anti-TNF therapy (Etanercept) with dietary supplementation with omega 3 PUFA could prevent pain and metabolic effects of RA. MATERIALS AND METHODS: RA was induced using collagen-induced arthritis (CIA) in rats to explore of supplementation with docosahexaenoic acid, treatment with etanercept or their association could alleviate symptoms of RA (pain, dysmobility), sarcopenia and metabolic alterations. KEY FINDINGS: We observed that Etanercept had major benefits on pain and RA scoring index. However, DHA could reduce the impact on body composition and metabolic alterations. SIGNIFICANCE: This study revealed for the first time that nutritional supplementation with omega 3 fatty acid could reduce some symptoms of rheumatoid arthritis and be an effective preventive treatment in patients who do not need pharmacological therapy, but no sign of synergy with an anti-TNF agent was observed.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ácidos Graxos Ômega-3 , Sarcopenia , Ratos , Animais , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Inibidores do Fator de Necrose Tumoral , Artrite Reumatoide/tratamento farmacológico , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação , Dor/tratamento farmacológico
5.
Mol Ther ; 19(10): 1780-92, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21427709

RESUMO

Peripheral inflammation or nerve injury induces a primary afferent barrage into the spinal cord, which can cause N-methyl D-aspartate (NMDA) receptor-dependent alterations in the responses of dorsal horn sensory neurons to subsequent afferent inputs. This plasticity, such as "wind-up" and central sensitization, contributes to the hyperexcitability of dorsal horn neurons and increased pain-related behavior in animal models, as well as clinical signs of chronic pain in humans, hyperalgesia and allodynia. Binding of NMDA receptor subunits by the scaffolding protein postsynaptic density protein-95 (PSD-95) can facilitate downstream intracellular signaling and modulate receptor stability, contributing to synaptic plasticity. Here, we show that spinal delivery of the mimetic peptide Tat-NR2B9c disrupts the interaction between PSD-95 and NR2B subunits in the dorsal horn and selectively reduces NMDA receptor-dependent events including wind-up of spinal sensory neurons, and both persistent formalin-induced neuronal activity and pain-related behaviors, attributed to central sensitization. Furthermore, a single intrathecal injection of Tat-NR2B9c in rats with established nerve injury-induced pain attenuates behavioral signs of mechanical and cold hypersensitivity, with no effect on locomotor performance. Thus, uncoupling of PSD-95 from spinal NR2B-containing NMDA receptors may prevent the neuronal plasticity involved in chronic pain and may be a successful analgesic therapy, reducing side effects associated with receptor blockade.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neuralgia/fisiopatologia , Plasticidade Neuronal , Nociceptividade , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/fisiopatologia , Animais , Proteína 4 Homóloga a Disks-Large , Neuralgia/metabolismo , Ratos , Medula Espinal/metabolismo
6.
Front Mol Neurosci ; 15: 880651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774865

RESUMO

Lysophosphatidyl-choline (LPC), a member of the phospholipid family, is an emerging player in pain. It is known to modulate different pain-related ion channels, including Acid-Sensing Ion Channel 3 (ASIC3), a cationic channel mainly expressed in peripheral sensory neurons. LPC potentiates ASIC3 current evoked by mild acidifications, but can also activate the channel at physiological pH. Very recently, LPC has been associated to chronic pain in patients suffering from fibromyalgia or osteoarthritis. Accordingly, repetitive injections of LPC within mouse muscle or joint generate both persistent pain-like and anxiety-like behaviors in an ASIC3-dependent manner. LPC has also been reported to generate acute pain behaviors when injected intraplantarly in rodents. Here, we explore the mechanism of action of a single cutaneous injection of LPC by studying its effects on spinal dorsal horn neurons. We combine pharmacological, molecular and functional approaches including in vitro patch clamp recordings and in vivo recordings of spinal neuronal activity. We show that a single cutaneous injection of LPC exclusively affects the nociceptive pathway, inducing an ASIC3-dependent sensitization of nociceptive fibers that leads to hyperexcitabilities of both high threshold (HT) and wide dynamic range (WDR) spinal neurons. ASIC3 is involved in LPC-induced increase of WDR neuron's windup as well as in WDR and HT neuron's mechanical hypersensitivity, and it participates, together with TRPV1, to HT neuron's thermal hypersensitivity. The nociceptive input induced by a single LPC cutaneous rather induces short-term sensitization, contrary to previously described injections in muscle and joint. If the effects of peripheral LPC on nociceptive pathways appear to mainly depend on peripheral ASIC3 channels, their consequences on pain may also depend on the tissue injected. Our findings contribute to a better understanding of the nociceptive signaling pathway activated by peripheral LPC via ASIC3 channels, which is an important step regarding the ASIC3-dependent roles of this phospholipid in acute and chronic pain conditions.

7.
Pain ; 163(7): e837-e849, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561389

RESUMO

ABSTRACT: Rheumatoid arthritis is frequently associated with chronic pain that still remains difficult to treat. Targeting nerve growth factor (NGF) seems very effective to reduce pain in at least osteoarthritis and chronic low back pain but leads to some potential adverse events. Our aim was to better understand the involvement of the intracellular signalling pathways activated by NGF through its specific tyrosine kinase type A (TrkA) receptor in the pathophysiology of rheumatoid arthritis using the complete Freund adjuvant model in our knock-in TrkA/C mice. Our multimodal study demonstrated that knock-in TrkA/C mice exhibited a specific decrease of mechanical allodynia, weight-bearing deficit, peptidergic (CGRP+) and sympathetic (TH+) peripheral nerve sprouting in the joints, a reduction in osteoclast activity and bone resorption markers, and a decrease of CD68-positive cells in the joint with no apparent changes in joint inflammation compared with wild-type mice after arthritis. Finally, transcriptomic analysis shows several differences in dorsal root ganglion mRNA expression of putative mechanotransducers, such as acid-sensing ionic channel 3 and TWIK-related arachidonic acid activated K+ channel, as well as intracellular pathways, such as c-Jun, in the joint or dorsal root ganglia. These results suggest that TrkA-specific intracellular signalling pathways are specifically involved in mechanical hypersensitivity and bone alterations after arthritis using TrkA/C mice.


Assuntos
Artrite Reumatoide , Hiperalgesia , Receptor trkA , Transdução de Sinais , Animais , Artrite Reumatoide/complicações , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Camundongos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptor trkA/genética
8.
Pain ; 163(10): 1999-2013, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086123

RESUMO

ABSTRACT: Rheumatic diseases are often associated to debilitating chronic pain, which remains difficult to treat and requires new therapeutic strategies. We had previously identified lysophosphatidylcholine (LPC) in the synovial fluids from few patients and shown its effect as a positive modulator of acid-sensing ion channel 3 (ASIC3) able to induce acute cutaneous pain in rodents. However, the possible involvement of LPC in chronic joint pain remained completely unknown. Here, we show, from 2 independent cohorts of patients with painful rheumatic diseases, that the synovial fluid levels of LPC are significantly elevated, especially the LPC16:0 species, compared with postmortem control subjects. Moreover, LPC16:0 levels correlated with pain outcomes in a cohort of osteoarthritis patients. However, LPC16:0 do not appear to be the hallmark of a particular joint disease because similar levels are found in the synovial fluids of a second cohort of patients with various rheumatic diseases. The mechanism of action was next explored by developing a pathology-derived rodent model. Intra-articular injections of LPC16:0 is a triggering factor of chronic joint pain in both male and female mice, ultimately leading to persistent pain and anxiety-like behaviors. All these effects are dependent on ASIC3 channels, which drive sufficient peripheral inputs to generate spinal sensitization processes. This study brings evidences from mouse and human supporting a role for LPC16:0 via ASIC3 channels in chronic pain arising from joints, with potential implications for pain management in osteoarthritis and possibly across other rheumatic diseases.


Assuntos
Canais Iônicos Sensíveis a Ácido , Dor Crônica , Osteoartrite , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Artralgia/etiologia , Feminino , Humanos , Lisofosfatidilcolinas/toxicidade , Masculino , Camundongos , Osteoartrite/complicações
9.
Pain ; 163(8): 1542-1559, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34924556

RESUMO

ABSTRACT: Several bone conditions, eg, bone cancer, osteoporosis, and rheumatoid arthritis (RA), are associated with a risk of developing persistent pain. Increased osteoclast activity is often the hallmark of these bony pathologies and not only leads to bone remodeling but is also a source of pronociceptive factors that sensitize the bone-innervating nociceptors. Although historically bone loss in RA has been believed to be a consequence of inflammation, both bone erosion and pain can occur years before the symptom onset. Here, we have addressed the disconnection between inflammation, pain, and bone erosion by using a combination of 2 monoclonal antibodies isolated from B cells of patients with RA. We have found that mice injected with B02/B09 monoclonal antibodies (mAbs) developed a long-lasting mechanical hypersensitivity that was accompanied by bone erosion in the absence of joint edema or synovitis. Intriguingly, we have noted a lack of analgesic effect of naproxen and a moderate elevation of few inflammatory factors in the ankle joints suggesting that B02/B09-induced pain-like behavior does not depend on inflammatory processes. By contrast, we found that inhibiting osteoclast activity and acid-sensing ion channel 3 signaling prevented the development of B02/B09-mediated mechanical hypersensitivity. Moreover, we have identified secretory phospholipase A2 and lysophosphatidylcholine 16:0 as critical components of B02/B09-induced pain-like behavior and shown that treatment with a secretory phospholipase A2 inhibitor reversed B02/B09-induced mechanical hypersensitivity and bone erosion. Taken together, our study suggests a potential link between bone erosion and pain in a state of subclinical inflammation and offers a step forward in understanding the mechanisms of bone pain in diseases such as RA.


Assuntos
Canais Iônicos Sensíveis a Ácido , Artrite Reumatoide , Osteoclastos , Dor , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Inflamação/complicações , Camundongos , Osteoclastos/patologia , Dor/patologia
10.
J Neurosci ; 30(2): 573-82, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20071520

RESUMO

The cytokine interleukin-1beta (IL-1beta) released by spinal microglia in enhanced response states contributes significantly to neuronal mechanisms of chronic pain. Here we examine the involvement of the purinergic P2X7 receptor in the release of IL-1beta following activation of Toll-like receptor-4 (TLR4) in the dorsal horn, which is associated with nociceptive behavior and microglial activation. We observed that lipopolysaccharide (LPS)-induced release of IL-1beta was prevented by pharmacological inhibition of the P2X7 receptor with A-438079, and was absent in spinal cord slices taken from P2X7 knock-out mice. Application of ATP did not evoke release of IL-1beta from the dorsal horn unless preceded by an LPS priming stimulus, and this release was dependent on P2X7 receptor activation. Extensive phosphorylation of p38 MAPK in microglial cells in the dorsal horn was found to correlate with IL-1beta secretion following both LPS and ATP. In behavioral studies, intrathecal injection of LPS in the lumbar spinal cord produced mechanical hyperalgesia in rat hindpaws, which was attenuated by concomitant injections of either a nonspecific (oxidized ATP) or a specific (A-438079) P2X7 antagonist. In addition, LPS-induced hypersensitivity was observed in wild-type but not P2X7 knock-out mice. These data suggest a critical role for the P2X7 receptor in the enhanced nociceptive transmission associated with microglial activation and secretion of IL-1beta in the dorsal horn. We suggest that CNS-penetrant P2X7 receptor antagonists, by targeting microglia in pain-enhanced response states, may be beneficial for the treatment of persistent pain.


Assuntos
Hiperalgesia/metabolismo , Interleucina-1beta/metabolismo , Receptores Purinérgicos P2/metabolismo , Medula Espinal/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hiperalgesia/induzido quimicamente , Técnicas In Vitro , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , Piridinas/farmacologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2X7 , Medula Espinal/anatomia & histologia , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Tetrazóis/farmacologia , Teofilina/análogos & derivados , Teofilina/farmacologia , Fatores de Tempo
11.
Mol Pain ; 7: 86, 2011 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-22054645

RESUMO

BACKGROUND: Central sensitization requires the activation of various intracellular signalling pathways within spinal dorsal horn neurons, leading to a lowering of activation threshold and enhanced responsiveness of these cells. Such plasticity contributes to the manifestation of chronic pain states and displays a number of features of long-term potentiation (LTP), a ubiquitous neuronal mechanism of increased synaptic strength. Here we describe the role of a novel pathway involving atypical PKCζ/PKMζ in persistent spinal nociceptive processing, previously implicated in the maintenance of late-phase LTP. RESULTS: Using both behavioral tests and in vivo electrophysiology in rats, we show that inhibition of this pathway, via spinal delivery of a myristoylated protein kinase C-ζ pseudo-substrate inhibitor, reduces both pain-related behaviors and the activity of deep dorsal horn wide dynamic range neurons (WDRs) following formalin administration. In addition, Complete Freund's Adjuvant (CFA)-induced mechanical and thermal hypersensitivity was also reduced by inhibition of PKCζ/PKMζ activity. Importantly, this inhibition did not affect acute pain or locomotor behavior in normal rats and interestingly, did not inhibited mechanical allodynia and hyperalgesia in neuropathic rats. Pain-related behaviors in both inflammatory models coincided with increased phosphorylation of PKCζ/PKMζ in dorsal horn neurons, specifically PKMζ phosphorylation in formalin rats. Finally, inhibition of PKCζ/PKMζ activity decreased the expression of Fos in response to formalin and CFA in both superficial and deep laminae of the dorsal horn. CONCLUSIONS: These results suggest that PKCζ, especially PKMζ isoform, is a significant factor involved in spinal persistent nociceptive processing, specifically, the manifestation of chronic pain states following peripheral inflammation.


Assuntos
Inflamação/metabolismo , Células do Corno Posterior/metabolismo , Proteína Quinase C/metabolismo , Animais , Adjuvante de Freund , Inflamação/fisiopatologia , Masculino , Neuralgia/metabolismo , Medição da Dor , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Brain ; 133(9): 2549-64, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20802203

RESUMO

Pain remains an area of considerable unmet clinical need, and this is particularly true of pain associated with bone metastases, in part because existing analgesic drugs show only limited efficacy in many patients and in part because of the adverse side effects associated with these agents. An important issue is that the nature and roles of the algogens produced in bone that drive pain-signalling systems remain unknown. Here, we tested the hypothesis that adenosine triphosphate is one such key mediator through actions on P2X3 and P2X2/3 receptors, which are expressed selectively on primary afferent nocioceptors, including those innervating the bone. Using a well-established rat model of bone cancer pain, AF-353, a recently described potent and selective P2X3 and P2X2/3 receptor antagonist, was administered orally to rats and found to produce highly significant prevention and reversal of bone cancer pain behaviour. This attenuation occurred without apparent modification of the disease, since bone destruction induced by rat MRMT-1 carcinoma cells was not significantly altered by AF-353. Using in vivo electrophysiology, evidence for a central site of action was provided by dose-dependent reductions in electrical, mechanical and thermal stimuli-evoked dorsal horn neuronal hyperexcitability following direct AF-353 administration onto the spinal cord of bone cancer animals. A peripheral site of action was also suggested by studies on the extracellular release of adenosine triphosphate from MRMT-1 carcinoma cells. Moreover, elevated phosphorylated-extracellular signal-regulated kinase expression in dorsal root ganglion neurons, induced by co-cultured MRMT-1 carcinoma cells, was significantly reduced in the presence of AF-353. These data suggest that blockade of P2X3 and P2X2/3 receptors on both the peripheral and central terminals of nocioceptors contributes to analgesic efficacy in a model of bone cancer pain. Thus, systemic P2X3 and P2X2/3 receptor antagonists with central nervous system penetration may offer a promising therapeutic tool in treating bone cancer pain.


Assuntos
Dor/tratamento farmacológico , Dor/psicologia , Antagonistas do Receptor Purinérgico P2 , Pirimidinas/uso terapêutico , Trifosfato de Adenosina/metabolismo , Administração Oral , Amidinas , Animais , Neoplasias Ósseas/complicações , Neoplasias Ósseas/patologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carcinoma/complicações , Carcinoma/patologia , Células Cultivadas , Técnicas de Cocultura/métodos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gânglios Espinais/citologia , Hiperalgesia/tratamento farmacológico , Dor/diagnóstico por imagem , Dor/etiologia , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Microtomografia por Raio-X/métodos
13.
Pain ; 161(5): 1109-1123, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31977937

RESUMO

Mechanical allodynia is a cardinal sign of several inflammatory pain disorders where nerve growth factor, a prototypic neurotrophin, plays a crucial role by binding to TrkA receptors. Here, we took the advantage of our generated knock-in mouse model expressing a chimeric TrkA/TrkC receptor that seems to not specifically develop mechanical allodynia after inflammation, to identify the TrkA downstream pathways involved in this phenomenon. We confirmed and extended that disrupting TrkA-specific pathways leads to a specific deficit in mechanical hypersensitivity development after somatic (systemic nerve growth factor administration and paw incision) and, to a lesser extent, visceral injuries. Despite a deficit in thin, mainly peptidergic, fibre innervation in TrkAC mice, thermal hyperalgesia development was not different from WT mice. Inflammatory reaction (oedema, IL-6 content), pain behaviours after intraplantar capsaicin, as well as TRPV1 calcium imaging response of dorsal root ganglion neurons were similar between TrkAC and WT mice. This deficiency in mechanical allodynia development in TrkAC mice is likely due to the alteration of the expression of different TrkA transduction pathways (ie, Akt, p38 MAPK, and c-Jun) especially p38 MAPK, in the dorsal root ganglion cell bodies, ultimately leading to an alteration of at least, ASIC3 channel overexpression, known to participate in nociceptor mechanosensory function.


Assuntos
Hiperalgesia , Animais , Gânglios Espinais , Proteínas Quinases JNK Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases , Camundongos , Fator de Crescimento Neural/genética , Receptor trkA/genética , Receptor trkC , Proteínas Quinases p38 Ativadas por Mitógeno
14.
J Neurosci ; 28(16): 4261-70, 2008 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-18417706

RESUMO

Here, we show that phosphatidylinositol 3-kinase (PI3K) is a key player in the establishment of central sensitization, the spinal cord phenomenon associated with persistent afferent inputs and contributing to chronic pain states. We demonstrated electrophysiologically that PI3K is required for the full expression of spinal neuronal wind-up. In an inflammatory pain model, intrathecal administration of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], a potent PI3K inhibitor, dose-dependently inhibited pain-related behavior. This effect was correlated with a reduction of the phosphorylation of ERK (extracellular signal-regulated kinase) and CaMKII (calcium/calmodulin-dependent protein kinase II). In addition, we observed a significant decrease in the phosphorylation of the NMDA receptor subunit NR2B, decreased translocation to the plasma membrane of the GluR1 (glutamate receptor 1) AMPA receptor subunit in the spinal cord, and a reduction of evoked neuronal activity as measured using c-Fos immunohistochemistry. Our study suggests that PI3K is a major factor in the expression of central sensitization after noxious inflammatory stimuli.


Assuntos
Mediadores da Inflamação/fisiologia , Dor/enzimologia , Dor/patologia , Fosfatidilinositol 3-Quinases/fisiologia , Medula Espinal/enzimologia , Animais , Cromonas/farmacologia , Formaldeído/toxicidade , Inflamação/induzido quimicamente , Inflamação/enzimologia , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Morfolinas/farmacologia , Dor/induzido quimicamente , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Inibidores de Fosfoinositídeo-3 Quinase , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
15.
Handb Exp Pharmacol ; (194): 589-615, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19655119

RESUMO

The prevalence of people suffering from chronic pain is extremely high and pain affects millions of people worldwide. As such, persistent pain represents a major health problem and an unmet clinical need. The reason for the high incidence of chronic pain patients is in a large part due to a paucity of effective pain control. An important reason for poor pain control is undoubtedly a deficit in our understanding of the underlying causes of chronic pain and as a consequence our arsenal of analgesic therapies is limited. However, there is considerable hope for the development of new classes of analgesic drugs by targeting novel processes contributing to clinically relevant pain. In this chapter we highlight a number of molecular species which are potential therapeutic targets for future neuropathic pain treatments. In particular, the roles of voltage-gated ion channels, neuroinflammation, protein kinases and neurotrophins are discussed in relation to the generation of neuropathic pain and how by targeting these molecules it may be possible to provide better pain control than is currently available.


Assuntos
Analgesia/métodos , Analgésicos/uso terapêutico , Terapia por Estimulação Elétrica , Terapia Genética , Neuralgia/terapia , Animais , Anti-Inflamatórios/uso terapêutico , Moduladores de Receptores de Canabinoides/metabolismo , Doença Crônica , Humanos , Moduladores de Transporte de Membrana/uso terapêutico , Fatores de Crescimento Neural/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Neuropeptídeos/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
16.
Pain ; 160(10): 2241-2254, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31145220

RESUMO

Human and animal imaging studies demonstrated that chronic pain profoundly alters the structure and the functionality of several brain regions. In this article, we conducted a longitudinal and multimodal study to assess how chronic pain affects the brain. Using the spared nerve injury model which promotes both long-lasting mechanical and thermal allodynia/hyperalgesia but also pain-associated comorbidities, we showed that neuropathic pain deeply modified the intrinsic organization of the brain functional network 1 and 2 months after injury. We found that both functional metrics and connectivity of the part A of the retrosplenial granular cortex (RSgA) were significantly correlated with the development of neuropathic pain behaviours. In addition, we found that the functional RSgA connectivity to the subiculum and the prelimbic system are significantly increased in spared nerve injury animals and correlated with peripheral pain thresholds. These brain regions were previously linked to the development of comorbidities associated with neuropathic pain. Using a voxel-based morphometry approach, we showed that neuropathic pain induced a significant increase of the gray matter concentration within the RSgA, associated with a significant activation of both astrocytes and microglial cells. Together, functional and morphological imaging metrics of the RSgA could be used as a predictive biomarker of neuropathic pain.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Neuralgia/diagnóstico por imagem , Neuralgia/fisiopatologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
17.
J Pharmacol Exp Ther ; 326(2): 623-32, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18492948

RESUMO

Diabetes and cancer chemotherapies are often associated with painful neuropathy. The mechanisms underlying neuropathic pain remain poorly understood, and the current therapies have limited efficacy and are associated with dose-limiting side effects. We recently described the pharmacological characterization of cholest-4-en-3-one, oxime (TRO19622), a cholesterol-like compound, that significantly reduced axonal degeneration and accelerated recovery of motor nerve conduction in a model of peripheral neuropathy induced by crushing the sciatic nerve. These results triggered investigation of efficacy in other preclinical models of peripheral neuropathy. Here, we report evidence that daily oral administration of TRO19622, while similarly improving motor nerve conduction impaired in streptozotocin-induced diabetic rats, also reversed neuropathic pain behavior as early as the first administration. Further exploration of these acute antinociceptive effects demonstrated that TRO19622 was also able to reverse tactile allodynia in vincristine-treated rats, a model of chemotherapy-induced neuropathic pain. It is interesting to note that TRO19622 did not have analgesic activity in animal models of pain produced by formalin injection, noxious thermal or mechanical stimulation, or chronic constriction injury of the sciatic nerve, indicating that painful diabetic or chemotherapy-induced neuropathies share a common mechanism that is distinct from acute, inflammationdriven, or lesion-induced neuropathic pain. These results support the potential use of TRO19622 to treat painful diabetic and chemotherapy-induced neuropathies.


Assuntos
Analgésicos , Comportamento Animal/efeitos dos fármacos , Colestenonas , Diabetes Mellitus Experimental/complicações , Dor/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Analgésicos/sangue , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Colestenonas/sangue , Colestenonas/farmacologia , Colestenonas/uso terapêutico , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/fisiopatologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia , Masculino , Condução Nervosa/efeitos dos fármacos , Dor/fisiopatologia , Medição da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Estreptozocina , Vincristina/efeitos adversos
18.
Anesth Analg ; 105(3): 838-47, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17717248

RESUMO

Damage to the peripheral nervous system often leads to chronic neuropathic pain characterized by spontaneous pain and an exaggerated response to painful and/or innocuous stimuli. This pain condition is extremely debilitating and usually difficult to treat. Although inflammatory and neuropathic pain syndromes are often considered distinct entities, emerging evidence belies this strict dichotomy. Inflammation is a well-characterized phenomenon, which involves a cascade of different immune cell types, such as mast cells, neutrophils, macrophages, and T lymphocytes. In addition, these cells release numerous compounds that contribute to pain. Recent evidence suggests that immune cells play a role in neuropathic pain in the periphery. In this review we identify the different immune cell types that contribute to neuropathic pain in the periphery and release factors that are crucial in this particular condition.


Assuntos
Sistema Imunitário/metabolismo , Mediadores da Inflamação/metabolismo , Neuralgia/imunologia , Doenças do Sistema Nervoso Periférico/complicações , Transdução de Sinais , Animais , Doença Crônica , Citocinas/metabolismo , Humanos , Sistema Imunitário/citologia , Macrófagos/metabolismo , Mastócitos/metabolismo , Fator de Crescimento Neural/metabolismo , Neuralgia/etiologia , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Neuroimunomodulação , Neutrófilos/metabolismo , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Células de Schwann/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo
19.
Front Mol Neurosci ; 15: 1025230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147209
20.
Pain ; 158(1): 149-160, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27984527

RESUMO

Antidepressants are first-line treatments of neuropathic pain but not all these drugs are really effective. Agomelatine is an antidepressant with a novel mode of action, acting as an MT1/MT2 melatonergic receptor agonist and a 5-HT2C receptor antagonist that involves indirect norepinephrine release. Melatonin, serotonin, and norepinephrine have been involved in the pathophysiology of neuropathic pain. Yet, no study has been conducted to determine agomelatine effects on neuropathic pain in animal models. Using 3 rat models of neuropathic pain of toxic (oxaliplatin/OXA), metabolic (streptozocin/STZ), and traumatic (sciatic nerve ligation/CCI [chronic constriction nerve injury]) etiologies, we investigated the antihypersensitivity effect of acute and repeated agomelatine administration. We then determined the influence of melatonergic, 5-HT2C, α-2 and ß-1/2 adrenergic receptor antagonists in the antihypersensitivity effect of agomelatine. The effect of the combination of agomelatine + gabapentin was evaluated using an isobolographic approach. In STZ and CCI models, single doses of agomelatine significantly and dose dependently reduced mechanical hypersensitivity. After daily administrations for 2 weeks, this effect was confirmed in the CCI model and agomelatine also displayed a marked antihypersensitivity effect in the OXA model. The antihypersensitivity effect of agomelatine involved melatonergic, 5-HT2C, and α-2 adrenergic receptors but not beta adrenoceptors. The isobolographic analysis demonstrated that the combination of agomelatine + gabapentin had additive effects. Agomelatine exerts a clear-cut antihypersensitivity effect in 3 different neuropathic pain models. Its effect is mediated by melatonergic and 5-HT2C receptors and, although agomelatine has no affinity, also by α-2 adrenergic receptors. Finally, agomelatine combined with gabapentin produces an additive antihypersensitivity effect.


Assuntos
Acetamidas/uso terapêutico , Hipnóticos e Sedativos/uso terapêutico , Neuralgia/tratamento farmacológico , Antagonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Aminas/uso terapêutico , Animais , Antineoplásicos/toxicidade , Constrição Patológica/complicações , Ácidos Cicloexanocarboxílicos/uso terapêutico , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Gabapentina , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Idazoxano/uso terapêutico , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neuralgia/etiologia , Compostos Organoplatínicos/toxicidade , Oxaliplatina , Medição da Dor , Ratos , Ratos Sprague-Dawley , Tiofenos/uso terapêutico , Ácido gama-Aminobutírico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA