Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(7): e1011522, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498954

RESUMO

ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for macromolecules as well as for the assembly of the latter into cellular structures. Other cellular processes not directly related to synthesis of biomass, such as maintenance of membrane potential and cellular shape, also require ATP. The unicellular flagellated parasite Trypanosoma brucei has a complex digenetic life cycle. The primary energy source for this parasite in its bloodstream form (BSF) is glucose, which is abundant in the host's bloodstream. Here, we made a detailed estimation of the energy budget during the BSF cell cycle. As glycolysis is the source of most produced ATP, we calculated that a single parasite produces 6.0 x 1011 molecules of ATP/cell cycle. Total biomass production (which involves biomass maintenance and duplication) accounts for ~63% of the total energy budget, while the total biomass duplication accounts for the remaining ~37% of the ATP consumption, with in both cases translation being the most expensive process. These values allowed us to estimate a theoretical YATP of 10.1 (g biomass)/mole ATP and a theoretical [Formula: see text] of 28.6 (g biomass)/mole ATP. Flagellar motility, variant surface glycoprotein recycling, transport and maintenance of transmembrane potential account for less than 30% of the consumed ATP. Finally, there is still ~5.5% available in the budget that is being used for other cellular processes of as yet unknown cost. These data put a new perspective on the assumptions about the relative energetic weight of the processes a BSF trypanosome undergoes during its cell cycle.


Assuntos
Parasitos , Trypanosoma brucei brucei , Animais , Trypanosoma brucei brucei/metabolismo , Glicólise , Parasitos/metabolismo , Trifosfato de Adenosina/metabolismo , Modelos Teóricos , Proteínas de Protozoários/metabolismo
3.
Biochem J ; 477(10): 1827-1845, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32315030

RESUMO

In Trypanosoma cruzi, the etiological agent of Chagas disease, the amino acid proline participates in processes related to T. cruzi survival and infection, such as ATP production, cell differentiation, host-cell invasion, and in protection against osmotic, nutritional, and thermal stresses and oxidative imbalance. However, little is known about proline biosynthesis in this parasite. Δ1-Pyrroline-5-carboxylate reductase (P5CR, EC 1.5.1.2) catalyzes the biosynthesis of proline from Δ1-pyrroline-5-carboxylate (P5C) with concomitant NADPH oxidation. Herein, we show that unlike other eukaryotes, T. cruzi biosynthesizes proline from P5C, which is produced exclusively from glutamate. We found that TcP5CR is an NADPH-dependent cytosolic enzyme with a Kmapp for P5C of 27.7 µM and with a higher expression in the insect-resident form of the parasite. High concentrations of the co-substrate NADPH partially inhibited TcP5CR activity, prompting us to analyze multiple kinetic inhibition models. The model that best explained the obtained data included a non-competitive substrate inhibition mechanism (Kiapp=45±0.7µM). Therefore, TcP5CR is a candidate as a regulatory factor of this pathway. Finally, we show that P5C can exit trypanosomatid mitochondria in conditions that do not compromise organelle integrity. These observations, together with previously reported results, lead us to propose that in T. cruzi TcP5CR participates in a redox shuttle between the mitochondria and the cytoplasm. In this model, cytoplasmic redox equivalents from NADPH pools are transferred to the mitochondria using proline as a reduced metabolite, and shuttling to fuel electrons to the respiratory chain through proline oxidation by its cognate dehydrogenase.


Assuntos
NADP/metabolismo , Prolina/metabolismo , Pirróis/metabolismo , Trypanosoma cruzi/metabolismo , Citosol/metabolismo , Transporte de Elétrons , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Pirrolina Carboxilato Redutases/metabolismo
4.
PLoS Pathog ; 13(1): e1006158, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28114403

RESUMO

Adaptation to different nutritional environments is essential for life cycle completion by all Trypanosoma brucei sub-species. In the tsetse fly vector, L-proline is among the most abundant amino acids and is mainly used by the fly for lactation and to fuel flight muscle. The procyclic (insect) stage of T. b. brucei uses L-proline as its main carbon source, relying on an efficient catabolic pathway to convert it to glutamate, and then to succinate, acetate and alanine as the main secreted end products. Here we investigated the essentiality of an undisrupted proline catabolic pathway in T. b. brucei by studying mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase (TbP5CDH), which catalyzes the irreversible conversion of gamma-glutamate semialdehyde (γGS) into L-glutamate and NADH. In addition, we provided evidence for the absence of a functional proline biosynthetic pathway. TbP5CDH expression is developmentally regulated in the insect stages of the parasite, but absent in bloodstream forms grown in vitro. RNAi down-regulation of TbP5CDH severely affected the growth of procyclic trypanosomes in vitro in the absence of glucose, and altered the metabolic flux when proline was the sole carbon source. Furthermore, TbP5CDH knocked-down cells exhibited alterations in the mitochondrial inner membrane potential (ΔΨm), respiratory control ratio and ATP production. Also, changes in the proline-glutamate oxidative capacity slightly affected the surface expression of the major surface glycoprotein EP-procyclin. In the tsetse, TbP5CDH knocked-down cells were impaired and thus unable to colonize the fly's midgut, probably due to the lack of glucose between bloodmeals. Altogether, our data show that the regulated expression of the proline metabolism pathway in T. b. brucei allows this parasite to adapt to the nutritional environment of the tsetse midgut.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Insetos Vetores/parasitologia , Prolina/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanossomíase/metabolismo , Moscas Tsé-Tsé/parasitologia , Adaptação Fisiológica/fisiologia , Animais , Western Blotting , Separação Celular , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência
5.
J Biol Chem ; 292(21): 8964-8977, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28356355

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, is a protozoan parasite with a complex life cycle involving a triatomine insect and mammals. Throughout its life cycle, the T. cruzi parasite faces several alternating events of cell division and cell differentiation in which exponential and stationary growth phases play key biological roles. It is well accepted that arrest of the cell division in the epimastigote stage, both in the midgut of the triatomine insect and in vitro, is required for metacyclogenesis, and it has been previously shown that the parasites change the expression profile of several proteins when entering this quiescent stage. However, little is known about the metabolic changes that epimastigotes undergo before they develop into the metacyclic trypomastigote stage. We applied targeted metabolomics to measure the metabolic intermediates in the most relevant pathways for energy metabolism and oxidative imbalance in exponentially growing and stationary growth-arrested epimastigote parasites. We show for the first time that T. cruzi epimastigotes transitioning from the exponential to the stationary phase exhibit a finely tuned adaptive metabolic mechanism that enables switching from glucose to amino acid consumption, which is more abundant in the stationary phase. This metabolic plasticity appears to be crucial for survival of the T. cruzi parasite in the myriad different environmental conditions to which it is exposed during its life cycle.


Assuntos
Metaboloma/fisiologia , Trypanosoma cruzi/crescimento & desenvolvimento , Estágios do Ciclo de Vida/fisiologia , Metabolômica
6.
Mol Biochem Parasitol ; 224: 17-25, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30030130

RESUMO

Trypanosoma cruzi, the aetiological agent of Chagas disease, can obtain L-glutamine (Gln) through the enzyme glutamine synthetase (GS) using glutamate (Glu) and ammonia as substrates. In this work, we show additional non-canonical roles for this amino acid: its involvement in ATP maintenance and parasite survival under severe metabolic stress conditions and its participation in the differentiation process occurring in the insect vector (metacyclogenesis). These roles are dependent on the supply of Gln from an extracellular source. We show that T. cruzi incorporates Gln through a saturable and specific transport system, which results in unusual stability at elevated temperatures. The activity was moderately higher at pH values between 6 and 7 and was sensitive to the dissipation of the H+ gradient at the plasma membrane. When analysed in the different life cycle stages, we found that Gln transport is developmentally regulated. In fact, Gln uptake and GS activity seem to be finely regulated at most stages: when GS activity is increased, transport is decreased and vice versa, with the exception of trypomastigotes, where both sources of Gln are diminished. This metabolic adaptation reflects the relevance of Gln in T. cruzi biology and the plasticity of these parasites to adjust their metabolism to changing environments.


Assuntos
Glutamina/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/efeitos da radiação , Concentração de Íons de Hidrogênio , Insetos/parasitologia , Temperatura , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/efeitos da radiação
7.
Pathogens ; 7(2)2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29614775

RESUMO

Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA