Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7844): 80-84, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536650

RESUMO

Active matter consists of units that generate mechanical work by consuming energy1. Examples include living systems (such as assemblies of bacteria2-5 and biological tissues6,7), biopolymers driven by molecular motors8-11 and suspensions of synthetic self-propelled particles12-14. A central goal is to understand and control the self-organization of active assemblies in space and time. Most active systems exhibit either spatial order mediated by interactions that coordinate the spatial structure and the motion of active agents12,14,15 or the temporal synchronization of individual oscillatory dynamics2. The simultaneous control of spatial and temporal organization is more challenging and generally requires complex interactions, such as reaction-diffusion hierarchies16 or genetically engineered cellular circuits2. Here we report a simple technique to simultaneously control the spatial and temporal self-organization of bacterial active matter. We confine dense active suspensions of Escherichia coli cells and manipulate a single macroscopic parameter-namely, the viscoelasticity of the suspending fluid- through the addition of purified genomic DNA. This reveals self-driven spatial and temporal organization in the form of a millimetre-scale rotating vortex with periodically oscillating global chirality of tunable frequency, reminiscent of a torsional pendulum. By combining experiments with an active-matter model, we explain this behaviour in terms of the interplay between active forcing and viscoelastic stress relaxation. Our findings provide insight into the influence of bacterial motile behaviour in complex fluids, which may be of interest in health- and ecology-related research, and demonstrate experimentally that rheological properties can be harnessed to control active-matter flows17,18. We envisage that our millimetre-scale, tunable, self-oscillating bacterial vortex may be coupled to actuation systems to act a 'clock generator' capable of providing timing signals for rhythmic locomotion of soft robots and for programmed microfluidic pumping19, for example, by triggering the action of a shift register in soft-robotic logic devices20.


Assuntos
Escherichia coli/fisiologia , Reologia , Análise Espaço-Temporal , Substâncias Viscoelásticas/química , Substâncias Viscoelásticas/metabolismo , DNA Bacteriano/análise , DNA Bacteriano/química , Difusão , Escherichia coli/citologia , Escherichia coli/isolamento & purificação , Microfluídica , Peso Molecular , Movimento , Robótica , Suspensões
2.
Proc Natl Acad Sci U S A ; 121(21): e2400933121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748571

RESUMO

Topological defects play a central role in the physics of many materials, including magnets, superconductors, and liquid crystals. In active fluids, defects become autonomous particles that spontaneously propel from internal active stresses and drive chaotic flows stirring the fluid. The intimate connection between defect textures and active flow suggests that properties of active materials can be engineered by controlling defects, but design principles for their spatiotemporal control remain elusive. Here, we propose a symmetry-based additive strategy for using elementary activity patterns, as active topological tweezers, to create, move, and braid such defects. By combining theory and simulations, we demonstrate how, at the collective level, spatial activity gradients act like electric fields which, when strong enough, induce an inverted topological polarization of defects, akin to a negative susceptibility dielectric. We harness this feature in a dynamic setting to collectively pattern and transport interacting active defects. Our work establishes an additive framework to sculpt flows and manipulate active defects in both space and time, paving the way to design programmable active and living materials for transport, memory, and logic.

3.
Proc Natl Acad Sci U S A ; 120(13): e2220167120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36947516

RESUMO

Orientational order, encoded in anisotropic fields, plays an important role during the development of an organism. A striking example of this is the freshwater polyp Hydra, where topological defects in the muscle fiber orientation have been shown to localize to key features of the body plan. This body plan is organized by morphogen concentration gradients, raising the question how muscle fiber orientation, morphogen gradients and body shape interact. Here, we introduce a minimal model that couples nematic orientational order to the gradient of a morphogen field. We show that on a planar surface, alignment to a radial concentration gradient can induce unbinding of topological defects, as observed during budding and tentacle formation in Hydra, and stabilize aster/vortex-like defects, as observed at a Hydra's mouth. On curved surfaces mimicking the morphologies of Hydra in various stages of development-from spheroid to adult-our model reproduces the experimentally observed reorganization of orientational order. Our results suggest how gradient alignment and curvature effects may work together to control orientational order during development and lay the foundations for future modeling efforts that will include the tissue mechanics that drive shape deformations.


Assuntos
Hydra , Animais , Anisotropia , Morfogênese , Hydra/fisiologia , Regeneração/fisiologia , Padronização Corporal
4.
Nat Mater ; 22(11): 1401-1408, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37679525

RESUMO

Demixing binary liquids is a ubiquitous transition explained using a well-established thermodynamic formalism that requires the equality of intensive thermodynamics parameters across phase boundaries. Demixing transitions also occur when binary fluid mixtures are driven away from equilibrium, but predicting and designing such out-of-equilibrium transitions remains a challenge. Here we study the liquid-liquid phase separation of attractive DNA nanostars driven away from equilibrium using a microtubule-based active fluid. We find that activity lowers the critical temperature and narrows the range of coexistence concentrations, but only in the presence of mechanical bonds between the liquid droplets and reconfiguring active fluid. Similar behaviours are observed in numerical simulations, suggesting that the activity suppression of the critical point is a generic feature of active liquid-liquid phase separation. Our work describes a versatile platform for building soft active materials with feedback control and providing an insight into self-organization in cell biology.

5.
Stud Mycol ; 107: 67-148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38600959

RESUMO

The phylogenetic position of several clitocyboid/pleurotoid/tricholomatoid genera previously considered incertae sedis is here resolved using an updated 6-gene dataset of Agaricales including newly sequenced lineages and more complete data from those already analyzed before. Results allowed to infer new phylogenetic relationships, and propose taxonomic novelties to accommodate them, including up to ten new families and a new suborder. Giacomia (for which a new species from China is here described) forms a monophyletic clade with Melanoleuca (Melanoleucaceae) nested inside suborder Pluteineae, together with the families Pluteaceae, Amanitaceae (including Leucocortinarius), Limnoperdaceae and Volvariellaceae. The recently described family Asproinocybaceae is shown to be a later synonym of Lyophyllaceae (which includes also Omphaliaster and Trichocybe) within suborder Tricholomatineae. The families Biannulariaceae, Callistosporiaceae, Clitocybaceae, Fayodiaceae, Macrocystidiaceae (which includes Pseudoclitopilus), Entolomataceae, Pseudoclitocybaceae (which includes Aspropaxillus), Omphalinaceae (Infundibulicybe and Omphalina) and the new families Paralepistaceae and Pseudoomphalinaceae belong also to Tricholomatineae. The delimitation of the suborder Pleurotineae (= Schizophyllineae) is discussed and revised, accepting five distinct families within it, viz. Pleurotaceae, Cyphellopsidaceae, Fistulinaceae, Resupinataceae and Schizophyllaceae. The recently proposed suborder Phyllotopsidineae (= Sarcomyxineae) is found to encompass the families Aphroditeolaceae, Pterulaceae, Phyllotopsidaceae, Radulomycetaceae, Sarcomyxaceae (which includes Tectella), and Stephanosporaceae, all of them unrelated to Pleurotaceae (suborder Pleurotineae) or Typhulaceae (suborder Typhulineae). The new family Xeromphalinaceae, encompassing the genera Xeromphalina and Heimiomyces, is proposed within Marasmiineae. The suborder Hygrophorineae is here reorganized into the families Hygrophoraceae, Cantharellulaceae, Cuphophyllaceae, Hygrocybaceae and Lichenomphaliaceae, to homogenize the taxonomic rank of the main clades inside all suborders of Agaricales. Finally, the genus Hygrophorocybe is shown to represent a distinct clade inside Cuphophyllaceae, and the new combination H. carolinensis is proposed. Taxonomic novelties: New suborder: Typhulineae Vizzini, Consiglio & P. Alvarado. New families: Aphroditeolaceae Vizzini, Consiglio & P. Alvarado, Melanoleucaceae Locq. ex Vizzini, Consiglio & P. Alvarado, Paralepistaceae Vizzini, Consiglio & P. Alvarado, Pseudoomphalinaceae Vizzini, Consiglio & P. Alvarado, Volvariellaceae Vizzini, Consiglio & P. Alvarado, Xeromphalinaceae Vizzini, Consiglio & P. Alvarado. New species: Giacomia sinensis J.Z. Xu. Stat. nov.: Cantharellulaceae (Lodge, Redhead, Norvell & Desjardin) Vizzini, Consiglio & P. Alvarado, Cuphophyllaceae (Z.M. He & Zhu L. Yang) Vizzini, Consiglio & P. Alvarado, Hygrocybaceae (Padamsee & Lodge) Vizzini, Consiglio & P. Alvarado, Lichenomphaliaceae (Lücking & Redhead) Vizzini, Consiglio & P. Alvarado. New combination: Hygrophorocybe carolinensis (H.E. Bigelow & Hesler) Vizzini, Consiglio & P. Alvarado. New synonyms: Sarcomyxineae Zhu L. Yang & G.S. Wang, Schizophyllineae Aime, Dentinger & Gaya, Asproinocybaceae T. Bau & G.F. Mou. Incertae sedis taxa placed at family level: Aphroditeola Redhead & Manfr. Binder, Giacomia Vizzini & Contu, Hygrophorocybe Vizzini & Contu, Leucocortinarius (J.E. Lange) Singer, Omphaliaster Lamoure, Pseudoclitopilus Vizzini & Contu, Resupinatus Nees ex Gray, Tectella Earle, Trichocybe Vizzini. New delimitations of taxa: Hygrophorineae Aime, Dentinger & Gaya, Phyllotopsidineae Zhu L. Yang & G.S. Wang, Pleurotineae Aime, Dentinger & Gaya, Pluteineae Aime, Dentinger & Gaya, Tricholomatineae Aime, Dentinger & Gaya. Resurrected taxa: Fayodiaceae Jülich, Resupinataceae Jülich. Citation: Vizzini A, Alvarado P, Consiglio G, Marchetti M, Xu J (2024). Family matters inside the order Agaricales: systematic reorganization and classification of incertae sedis clitocyboid, pleurotoid and tricholomatoid taxa based on an updated 6-gene phylogeny. Studies in Mycology 107: 67-148. doi: 10.3114/sim.2024.107.02.

6.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658364

RESUMO

In equilibrium, disorder conspires with topological defects to redefine the ordered states of matter in systems as diverse as crystals, superconductors, and liquid crystals. Far from equilibrium, however, the consequences of quenched disorder on active condensed matter remain virtually uncharted. Here, we reveal a state of strongly disordered active matter with no counterparts in equilibrium: a dynamical vortex glass. Combining microfluidic experiments and theory, we show how colloidal flocks collectively cruise through disordered environments without relaxing the topological singularities of their flows. The resulting state is highly dynamical but the flow patterns, shaped by a finite density of frozen vortices, are stationary and exponentially degenerated. Quenched isotropic disorder acts as a random gauge field turning active liquids into dynamical vortex glasses. We argue that this robust mechanism should shape the collective dynamics of a broad class of disordered active matter, from synthetic active nematics to collections of living cells exploring heterogeneous media.

7.
Soft Matter ; 19(40): 7828-7835, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796173

RESUMO

We use numerical simulations and linear stability analysis to study the dynamics of an active liquid crystal film on a substrate in the regime where the passive system would be isotropic. Extensile activity builds up local orientational order and destabilizes the quiescent isotropic state above a critical activity, eventually resulting in spatiotemporal chaotic dynamics akin to the one observed ubiquitously in the nematic state. Here we show that tuning substrate friction yields a variety of emergent structures at intermediate activity, including lattices of flow vortices with associated regular arrangements of topological defects and a new state where flow vortices trap pairs of +1/2 defect that chase each other's tail. These chiral units spontaneously pick the sense of rotation and organize in a hexagonal lattice, surrounded by a diffuse flow of opposite rotation to maintain zero net vorticity. The length scale of these emergent structures is set by the screening length of the flow, controlled by the shear viscosity η and the substrate friction Γ, and can be captured by simple mode selection of the vortical flows. We demonstrate that the emergence of coherent structures can be interpreted as a phase separation of vorticity, where friction plays a role akin to that of birth/death processes in breaking conservation of the phase separating species and selecting a characteristic scale for the patterns. Our work shows that friction provides an experimentally accessible tuning parameter for designing controlled active flows.

8.
Soft Matter ; 19(40): 7744-7752, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37789810

RESUMO

Using a mean field approach and simulations, we study the non-linear mechanical response of the vertex model (VM) of biological tissue to compression and dilation. The VM is known to exhibit a transition between solid and fluid-like, or floppy, states driven by geometric incompatibility. Target perimeter and area set a target shape which may not be geometrically achievable, thereby engendering frustration. Previously, an asymmetry in the linear elastic response was identified at the rigidity transition between compression and dilation. Here we show that the asymmetry extends away from the transition point for finite strains. Under finite compression, an initially solid VM can completely relax perimeter tension, resulting in a drop discontinuity in the mechanical response. Conversely, an initially floppy VM under dilation can rigidify and have a higher response. These observations imply that re-scaling of cell area shifts the transition between rigid and floppy states. Based on this insight, we calculate the re-scaling of cell area engendered by intrinsic curvature and write a prediction for the rigidity transition in the presence of curvature. The shift of the rigidity transition in the presence of curvature for the VM provides a new metric for predicting tissue rigidity from image data of curved tissues in a manner analogous to the flat case.


Assuntos
Elasticidade
9.
Soft Matter ; 19(42): 8172-8178, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850477

RESUMO

Using a multi-phase field model, we examine how particle deformability, which is a proxy for cell stiffness, affects motility induced phase separation (MIPS). We show that purely repulsive deformable, i.e., squishy, cells phase separate more effectively than their rigid counterparts. This can be understood as due to the fact that deformability increases the effective duration of collisions. In addition, the dense regions become increasingly disordered as deformability increases. Our results contextualize the applicability of MIPS to biological systems and have implications for how cells in biological systems may self-organize.

10.
Soft Matter ; 19(17): 3080-3091, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37039037

RESUMO

The vertex model of epithelia describes the apical surface of a tissue as a tiling of polygonal cells, with a mechanical energy governed by deviations in cell shape from preferred, or target, area, A0, and perimeter, P0. The model exhibits a rigidity transition driven by geometric incompatibility as tuned by the target shape index, . For with p*(6) the perimeter of a regular hexagon of unit area, a cell can simultaneously attain both the preferred area and preferred perimeter. As a result, the tissue is in a mechanically soft compatible state, with zero shear and Young's moduli. For p0 < p*(6), it is geometrically impossible for any cell to realize the preferred area and perimeter simultaneously, and the tissue is in an incompatible rigid solid state. Using a mean-field approach, we present a complete analytical calculation of the linear elastic moduli of an ordered vertex model. We analyze a relaxation step that includes non-affine deformations, leading to a softer response than previously reported. The origin of the vanishing shear and Young's moduli in the compatible state is the presence of zero-energy deformations of cell shape. The bulk modulus exhibits a jump discontinuity at the transition and can be lower in the rigid state than in the fluid-like state. The Poisson's ratio can become negative which lowers the bulk and Young's moduli. Our work provides a unified treatment of linear elasticity for the vertex model and demonstrates that this linear response is protocol-dependent.

11.
Transfus Apher Sci ; 62(6): 103830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37867056

RESUMO

The success of the autologous stem cell transplantation is strictly related to an adequate hematopoietic stem cell mobilization and collection. The minimum threshold for a successful mobilization is currently defined as 2 × 106/kg CD34+ cells. However, the optimal stem cell mobilization strategy is still controversial. The availability of plerixafor, a selective and reversible CXCR4 inhibitor, has been associated with an higher use of chemo-free protocols by many centres. In the near future, it is conceivable that artificial intelligence may became more accurate and comprehensive, possibly guiding clinicians in choosing the optimal mobilisation treatment for the various patients undergoing hematopoietic stem cell transplantation. Machine learning-based scoring models may be the basis for the development of "intelligent" mobilisation algorithms.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Compostos Heterocíclicos , Mieloma Múltiplo , Humanos , Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Inteligência Artificial , Antígenos CD34/metabolismo , Transplante Autólogo , Compostos Heterocíclicos/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mieloma Múltiplo/terapia
12.
J Eur Acad Dermatol Venereol ; 37(5): 945-950, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36708077

RESUMO

BACKGROUND: Existing artificial intelligence for melanoma detection has relied on analysing images of lesions of clinical interest, which may lead to missed melanomas. Tools analysing the entire skin surface are lacking. OBJECTIVES: To determine if melanoma can be distinguished from other skin lesions using data from automated analysis of 3D-images. METHODS: Single-centre, retrospective, observational convenience sample of patients diagnosed with melanoma at a tertiary care cancer hospital. Eligible participants were those with a whole-body 3D-image captured within 90 days prior to the diagnostic skin biopsy. 3D-images were obtained as standard of care using VECTRA WB360 Whole Body 3-dimensional Imaging System (Canfield Scientific). Automated data from image processing (i.e. lesion size, colour, border) for all eligible participants were exported from VECTRA DermaGraphix research software for analysis. The main outcome was the area under the receiver operating characteristic curve (AUC). RESULTS: A total of 35 patients contributed 23,538 automatically identified skin lesions >2 mm in largest diameter (102-3021 lesions per participant). All were White patients and 23 (66%) were males. The median (range) age was 64 years (26-89). There were 49 lesions of melanoma and 22,489 lesions that were not melanoma. The AUC for the prediction model was 0.94 (95% CI: 0.92-0.96). Considering all lesions in a patient-level analysis, 14 (28%) melanoma lesions had the highest predicted score or were in the 99th percentile among all lesions for an individual patient. CONCLUSIONS: In this proof-of-concept pilot study, we demonstrated that automated analysis of whole-body 3D-images using simple image processing techniques can discriminate melanoma from other skin lesions with high accuracy. Further studies with larger, higher quality, and more representative 3D-imaging datasets would be needed to improve and validate these results.


Assuntos
Melanoma , Neoplasias Cutâneas , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inteligência Artificial , Dermoscopia , Melanoma/patologia , Projetos Piloto , Estudos Retrospectivos , Sensibilidade e Especificidade , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia
13.
Proc Natl Acad Sci U S A ; 117(33): 19767-19772, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32753380

RESUMO

We examine a nonreciprocally coupled dynamical model of a mixture of two diffusing species. We demonstrate that nonreciprocity, which is encoded in the model via antagonistic cross-diffusivities, provides a generic mechanism for the emergence of traveling patterns in purely diffusive systems with conservative dynamics. In the absence of nonreciprocity, the binary fluid mixture undergoes a phase transition from a homogeneous mixed state to a demixed state with spatially separated regions rich in one of the two components. Above a critical value of the parameter tuning nonreciprocity, the static demixed pattern acquires a finite velocity, resulting in a state that breaks both spatial and time-reversal symmetry, as well as the reflection parity of the static pattern. We elucidate the generic nature of the transition to traveling patterns using a minimal model that can be studied analytically. Our work has direct relevance to nonequilibrium assembly in mixtures of chemically interacting colloids that are known to exhibit nonreciprocal effective interactions, as well as to mixtures of active and passive agents where traveling states of the type predicted here have been observed in simulations. It also provides insight on transitions to traveling and oscillatory states seen in a broad range of nonreciprocal systems with nonconservative dynamics, from reaction-diffusion and prey-predators models to multispecies mixtures of microorganisms with antagonistic interactions.

14.
Persoonia ; 50: 123-157, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38567261

RESUMO

A revision, based on morphological and multigene analysis, of the Clitocella species currently present in Europe is provided. Portions of nrITS rDNA, nr28S rDNA (LSU), RNA polymerase II second largest subunit (RPB2), translation elongation factor 1-alpha (EF-1α), and ATPase subunit 6 (ATP6), were used to sort out the relationships of the species within the genus. Three subgenera were recognized: Clitocella subg. Clitocella encompassing C. popinalis, C. colorata, C. mundula, C. nigrescens, C. obscura and the new species C. solaris from Switzerland; the new Clitocella subg. Paraclitopilus including C. fallax and C. blancii; and the new Clitocella subg. Rhodopleurella for accommodating C. termitophila, a peculiar entity characterized by a pleurotoid habit and growing on decaying, abandoned termite nests in the Dominican Republic. Clitocella colorata originally described from China is here reported and described for the first time in Europe (Italy and Estonia). Rhodocybe cupressicola and Clitopilus ammophilus are reduced to later synonyms of Rhodopaxillus nigrescens; similarly, Clitopilus amarus is treated as a later synonym of Omphalia fallax while Rhodocybe amarella and R. ochraceopallida of Rhodopaxillus blancii. Finally, Austrian and Swedish herbarium collections identified as Rhodocybe, a doubtful taxon considered by several modern authors occasionally as either a similar but distinct species from R. popinalis or as a dwarfish, puny and odourless form of R. popinalis, have been proved to be R. tugrulii, a species recently described from Turkey and Estonia, and also later reported from Italy and USA. Citation: Vizzini A, Consiglio G, Marchetti M. 2023. Overview of the European species of the genus Clitocella (Entolomataceae, Agaricales) with notes on extralimital taxa. Persoonia 50: 123-157. https://doi.org/10.3767/persoonia.2023.50.04.

15.
Phys Rev Lett ; 129(26): 268002, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36608178

RESUMO

We use a continuum model to examine the effect of activity on a phase-separating mixture of an extensile active nematic and a passive fluid. We highlight the distinct role of (i) previously considered interfacial active stresses and (ii) bulk active stresses that couple to liquid crystalline degrees of freedom. Interfacial active stresses can arrest phase separation, as previously demonstrated. Bulk extensile active stresses can additionally strongly suppress phase separation by sustained self-stirring of the fluid, substantially reducing the size of the coexistence region in the temperature-concentration plane relative to that of the passive system. The phase-separated state is a dynamical emulsion of continuously splitting and merging droplets, as suggested by recent experiments. Using scaling analysis and simulations, we identify various regimes for the dependence of droplet size on activity. These results can provide a criterion for identifying the mechanisms responsible for arresting phase separation in experiments.


Assuntos
Cristais Líquidos , Emulsões/química , Cristais Líquidos/química
16.
Phys Rev Lett ; 128(17): 178001, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570431

RESUMO

Biological processes, from morphogenesis to tumor invasion, spontaneously generate shear stresses inside living tissue. The mechanisms that govern the transmission of mechanical forces in epithelia and the collective response of the tissue to bulk shear deformations remain, however, poorly understood. Using a minimal cell-based computational model, we investigate the constitutive relation of confluent tissues under simple shear deformation. We show that an initially undeformed fluidlike tissue acquires finite rigidity above a critical applied strain. This is akin to the shear-driven rigidity observed in other soft matter systems. Interestingly, shear-driven rigidity can be understood by a critical scaling analysis in the vicinity of the second order critical point that governs the liquid-solid transition of the undeformed system. We further show that a solidlike tissue responds linearly only to small strains and but then switches to a nonlinear response at larger stains, with substantial stiffening. Finally, we propose a mean-field formulation for cells under shear that offers a simple physical explanation of shear-driven rigidity and nonlinear response in a tissue.


Assuntos
Elasticidade , Epitélio , Estresse Mecânico
17.
Phys Rev Lett ; 129(14): 148101, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240394

RESUMO

The rheology of biological tissue plays an important role in many processes, from organ formation to cancer invasion. Here, we use a multiphase field model of motile cells to simulate active microrheology within a tissue monolayer. When unperturbed, the tissue exhibits a transition between a solidlike state and a fluidlike state tuned by cell motility and deformability-the ratio of the energetic costs of steric cell-cell repulsion and cell-edge tension. When perturbed, solid tissues exhibit local yield-stress behavior, with a threshold force for the onset of motion of a probe particle that vanishes upon approaching the solid-to-liquid transition. This onset of motion is qualitatively different in the low and high deformability regimes. At high deformability, the tissue is amorphous when solid, it responds compliantly to deformations, and the probe transition to motion is smooth. At low deformability, the monolayer is more ordered translationally and stiffer, and the onset of motion appears discontinuous. Our results suggest that cellular or nanoparticle transport in different types of tissues can be fundamentally different and point to ways in which it can be controlled.


Assuntos
Reologia , Movimento Celular , Movimento (Física) , Reologia/métodos
18.
Ultrasound Obstet Gynecol ; 60(5): 604-611, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35656849

RESUMO

OBJECTIVES: To evaluate and compare the diagnostic test accuracy (DTA) of three-dimensional transvaginal ultrasound (3D-TVS) and magnetic resonance imaging (MRI) for deep myometrial infiltration (DMI) and cervical invasion for preoperative staging and surgery planning in patients with endometrial cancer (EC). METHODS: This systematic review and meta-analysis investigated the DTA of MRI and 3D-TVS for DMI and cervical invasion in patients with EC. A literature search was performed using MEDLINE, Scopus, EMBASE, ScienceDirect, The Cochrane library, ClinicalTrials.gov, Cochrane Central Register of Controlled Trials, EU Clinical Trials Register and World Health Organization International Clinical Trials Registry Platform to identify relevant studies published between January 2000 and December 2021. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. RESULTS: Five studies, including a total of 450 patients, were included in the systematic review. All five studies compared the DTA of 3D-TVS vs MRI for DMI, and three studies compared the DTA of 3D-TVS vs MRI for cervical invasion. Pooled sensitivity, positive likelihood ratio and negative likelihood ratio for detecting DMI using 3D-TVS were 77% (95% CI, 66-85%), 4.57 and 0.31, respectively. The respective values for detecting DMI on MRI were 80% (95% CI, 73-86%), 4.22 and 0.24. Bivariate metaregression indicated a similar DTA of 3D-TVS and MRI (P = 0.80) for the correct identification of DMI. Pooled ln diagnostic odds ratio for detecting cervical invasion was 3.11 (95% CI, 2.09-4.14) for 3D-TVS and 2.36 (95% CI, 0.90-3.83) for MRI. The risk of bias was low for most of the four domains assessed in QUADAS-2. CONCLUSION: 3D-TVS demonstrated good diagnostic accuracy in terms of sensitivity and specificity for the evaluation of DMI and cervical invasion, with results comparable with those of MRI. Thus, we confirmed the potential role of 3D-TVS in the preoperative staging and surgery planning in patients with EC. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Neoplasias do Endométrio , Miométrio , Gravidez , Feminino , Humanos , Invasividade Neoplásica/patologia , Miométrio/diagnóstico por imagem , Neoplasias do Endométrio/patologia , Ultrassonografia/métodos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Estadiamento de Neoplasias
19.
J Eur Acad Dermatol Venereol ; 36(12): 2379-2387, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35881111

RESUMO

BACKGROUND: There is little understanding regarding the long-term natural history of melanocytic nevi among adults. OBJECTIVE: The objective of the study was to describe the long-term natural history of individual nevi located on the torso of high-risk patients. METHODS: All patients attending Memorial Sloan Kettering Cancer Center (MSKCC) who underwent two total body photography (TBP) sessions 15+ years apart were included ('retrospective' group). To account for a potential selection bias, we also included consecutive patients who had TBP 15+ years ago and consented to undergo follow-up TBP ('prospective' group). We compared baseline and follow-up torso images on the TBPs and evaluated the number of total, new and disappearing nevi; number of seborrheic keratoses and actinic keratoses; each nevus' diameter at both time points; each nevus' colour change; the presence of clinical atypia; and when dermoscopy was available, the dermoscopic features at each time point. RESULTS: One hundred six patients were included in the study. Although the average age of the patients was 40 at baseline TBP, most patients developed new nevi between imaging sessions (median 16.4 years) with an average of 2.6 (SD = 4.8) nevi per participant. The average number of disappearing nevi was 0.3 (SD = 0.6). In addition, 62/106 (58%) patients had an absolute increase, and 9/106 (8%) patients had an absolute decrease in their total nevus count. Roughly half (49%: 1416/2890) of the nevi that could be evaluated at both time points increased in diameter by at least 25%. Only 6% (159/2890) of nevi shrunk in diameter by at least 25%. Patients with a history of melanoma had a higher rate of disappearing nevi, and their nevi were more likely to grow. Most nevi demonstrated no significant dermoscopic changes. CONCLUSIONS: High-risk patients acquire new nevi throughout life with very few nevi disappearing over time. Contrary to prior reports, most nevi in adults increase in diameter, while few nevi shrink.


Assuntos
Nevo de Células Epitelioides e Fusiformes , Nevo Pigmentado , Nevo , Neoplasias Cutâneas , Adulto , Humanos , Dermoscopia/métodos
20.
Soft Matter ; 17(11): 3068-3073, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33596291

RESUMO

Recent experiments in various cell types have shown that two-dimensional tissues often display local nematic order, with evidence of extensile stresses manifest in the dynamics of topological defects. Using a mesoscopic model where tissue flow is generated by fluctuating traction forces coupled to the nematic order parameter, we show that the resulting tissue dynamics can spontaneously produce local nematic order and an extensile internal stress. A key element of the model is the assumption that in the presence of local nematic alignment, cells preferentially crawl along the nematic axis, resulting in anisotropy of fluctuations. Our work shows that activity can drive either extensile or contractile stresses in tissue, depending on the relative strength of the contractility of the cortical cytoskeleton and tractions by cells on the extracellular matrix.


Assuntos
Citoesqueleto , Matriz Extracelular , Anisotropia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA