Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Faraday Discuss ; 250(0): 110-128, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37987255

RESUMO

One of the possible solutions to circumvent the sluggish kinetics, low capacity, and poor integrity of inorganic cathodes commonly used in rechargeable aluminium batteries (RABs) is the use of redox-active polymers as cathodes. They are not only sustainable materials characterised by their structure tunability, but also exhibit a unique ion coordination redox mechanism that makes them versatile ion hosts suitable for voluminous aluminium cation complexes, as demonstrated by the poly(quinoyl) family. Recently, phenazine-based compounds have been found to have high capacity, reversibility and fast redox kinetics in aqueous electrolytes because of the presence of a CN double bond. Here, we present one of the first examples of a phenazine-based hybrid microporous polymer, referred to as IEP-27-SR, utilized as an organic cathode in an aluminium battery with an AlCl3/EMIMCl ionic liquid electrolyte. The preliminary redox and charge storage mechanism of IEP-27-SR was confirmed by ex situ ATR-IR and EDS analyses. The introduction of phenazine active units in a robust microporous framework resulted in a remarkable rate capability (specific capacity of 116 mA h g-1 at 0.5C with 77% capacity retention at 10C) and notable cycling stability, maintaining 75% of its initial capacity after 3440 charge-discharge cycles at 1C (127 days of continuous cycling). This superior performance compared to reported Al//n-type organic cathode RABs is attributed to the stable 3D porous microstructure and the presence of micro/mesoporosity in IEP-27-SR, which facilitates electrolyte permeability and improves kinetics.

2.
Small ; 18(16): e2106403, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35274455

RESUMO

Energy-storage materials can be assembled directly on the electrodes of a battery using electrochemical methods, this allowing sequential deposition, high structural control, and low cost. Here, a two-step approach combining electrophoretic deposition (EPD) and cathodic electrodeposition (CED) is demonstrated to fabricate multilayer hierarchical electrodes of reduced graphene oxide (rGO) and mixed transition metal sulfides (NiCoMnSx ). The process is performed directly on conductive electrodes applying a small electric bias to electro-deposit rGO and NiCoMnSx in alternated cycles, yielding an ideal porous network and a continuous path for transport of ions and electrons. A fully rechargeable alkaline battery (RAB) assembled with such electrodes gives maximum energy density of 97.2 Wh kg-1 and maximum power density of 3.1 kW kg-1 , calculated on the total mass of active materials, and outstanding cycling stability (retention 72% after 7000 charge/discharge cycles at 10 A g-1 ). When the total electrode mass of the cell is considered, the authors achieve an unprecedented gravimetric energy density of 68.5 Wh kg-1 , sevenfold higher than that of typical commercial supercapacitors, higher than that of Ni/Cd or lead-acid Batteries and similar to Ni-MH Batteries. The approach can be used to assemble multilayer composite structures on arbitrary electrode shapes.

5.
Angew Chem Int Ed Engl ; 56(41): 12460-12465, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28658538

RESUMO

Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short-lifetimes, and expensive ion-selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane-free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof-of-concept of a membrane-free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L-1 , and is able to deliver 90 % of its theoretical capacity while showing excellent long-term performance (coulombic efficiency of 100 % and energy efficiency of 70 %).

7.
ChemSusChem ; 16(8): e202201984, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36753400

RESUMO

Phenazines are an emerging class of organic compounds that have been recently utilized in aqueous redox flow batteries, a promising technology for large-scale energy storage. A virtual screening based on density functional theory calculations is used to investigate the redox potentials of around 100 phenazine derivatives in aqueous media containing various electron-donating or electron-withdrawing groups at different positions. The calculations identify the crucial positions that should be functionalized with multiple hydroxy groups to design new anolytes. The combined experimental-computational methodology reported herein guides the development of a new molecule with a record low reversible redox potential as a potential anolyte for aqueous redox flow batteries.

8.
ACS Appl Energy Mater ; 6(13): 7250-7257, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37448980

RESUMO

Ca- and Mg-based batteries represent a more sustainable alternative to Li-ion batteries. However, multivalent cation technologies suffer from poor cation mass transport. In addition, the development of positive electrodes enabling reversible charge storage currently represents one of the major challenges. Organic positive electrodes, in addition to being the most sustainable and potentially low-cost candidates, compared with their inorganic counterparts, currently present the best electrochemical performances in Ca and Mg cells. Unfortunately, organic positive electrodes suffer from relatively low capacity retention upon cycling, the origin of which is not yet fully understood. Here, 1,4,5,8-naphthalenetetracarboxylic dianhydride-derived polyimide was tested in Li, Na, Mg, and Ca cells for the sake of comparison in terms of redox potential, gravimetric capacities, capacity retention, and rate capability. The redox mechanisms were also investigated by means of operando IR experiments, and a parameter affecting most figures of merit has been identified: the presence of contact ion-pairs in the electrolyte.

9.
Macromol Rapid Commun ; 33(4): 314-8, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22262519

RESUMO

A new family of supramolecular ionic polymers is synthesized by a simple method using (di-/tri-)carboxylic acids and (di-/tri-)alkyl amines. These polymers are formed by carboxylate and ammonium molecules that are weakly bonded together by a combination of ionic and hydrogen bonds, becoming solid at room temperature. The supramolecular ionic polymers show a sharp rheological transition from a viscoelastic gel to a viscous liquid between 30 and 80 °C. This sharp viscosity decrease is responsible for an unprecedented jump in ionic conductivity of four orders of magnitude in that temperature range. As a potential application, this chemistry can be used to develop polymeric materials with self-healing properties, since it combines properties from supramolecular polymers and ionomers into the same material.


Assuntos
Polímeros/química , Aminas/química , Íons/química , Reologia , Temperatura
10.
Phys Chem Chem Phys ; 13(29): 13433-40, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21709895

RESUMO

The influence of the Zn(2+) concentration and temperature on the electrochemical reduction of O(2) in a solution of zinc bis(trifluoromethanesulfonyl)imide (Zn(TFSI)(2)) salt in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR(14)TFSI) ionic liquid is presented. ZnO nanocrystalline films were then electrodeposited, under enhanced O(2) reduction, at temperatures in the 75-150 °C range. Their morphology, chemical composition, structural and optical properties were analyzed. In contrast to the polar-oriented ZnO usually obtained from aqueous and conventional solvent based electrolytes, nanocrystalline films oriented along non-polar directions, (11 ̅10) and (11 ̅20), were obtained from this ionic liquid electrolyte. A significant content of carbon was detected in the films, pointing to the active participation and crucial effect of pyrrolidinium cation (and/or byproducts) during the electrodeposition. The films showed semiconducting behavior with an optical gap between 3.43 and 3.53 eV as measured by optical transmittance. Their room temperature photoluminescence spectra exhibited two different bands centered at ∼3.4 and ∼2.2 eV. The intensity ratio between both bands was found to depend on the deposition temperature. This work demonstrates the great potential of ionic liquids based electrolytes for the electrodeposition of ZnO nanocrystalline thin films with innovative microstructural and optoelectronic properties.


Assuntos
Líquidos Iônicos/química , Oxigênio/química , Pirrolidinas/química , Óxido de Zinco/química , Zinco/química , Cátions , Eletroquímica , Imidazóis/química , Microscopia Eletrônica de Varredura , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Polymers (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063919

RESUMO

Aqueous zinc-polymer batteries (AZPBs) comprising abundant Zn metal anode and redox-active polymer (RAP) cathodes can be a promising solution for accomplishing viable, safe and sustainable energy storage systems. Though a limited number of RAPs have been successfully applied as organic cathodes in AZPBs, their macromolecular engineering towards improving electrochemical performance is rarely considered. In this study, we systematically compare performance of AZPB comprising Zn metal anode and either poly(catechol) homopolymer (named P(4VC)) or poly(catechol) copolymer (named P(4VC86-stat-SS14)) as polymer cathodes. Sulfonate anionic pendants in copolymer not only rendered lower activation energy and higher rate constant, but also conferred lower charge-transfer resistance, as well as facilitated Zn2+ mobility and less diffusion-controlled current responses compared to its homopolymer analogue. Consequently, the Zn||P(4VC86-stat-SS14) full-cell exhibits enhanced gravimetric (180 versus 120 mAh g-1 at 30 mg cm-2) and areal capacity (5.4 versus 3.6 mAh cm-2 at 30 mg cm-2) values, as well as superior rate capability both at room temperature (149 versus 105 mAh g-1 at 150 C) and at -35 °C (101 versus 35 mAh g-1 at 30 C) compared to Zn||P(4VC)100. This overall improved performance for Zn||P(4VC86-stat-SS14) is highly encouraging from the perspective applying macromolecular engineering strategies and paves the way for the design of advanced high-performance metal-organic batteries.

12.
Nanoscale ; 12(32): 16980-16986, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32780058

RESUMO

In this work, we report the fabrication of continuous transparent and flexible supercapacitors by depositing a CNT network onto a polymer electrolyte membrane directly from an aerogel of ultra-long CNTs produced floating in the gas phase. The supercapacitors show a combination of a power density of 1370 kW kg-1 at high transmittance (ca. 70%), and high electrochemical stability during extended cycling (>94% capacitance retention over 20 000 cycles) and against repeated 180° flexural deformation. They represent a significant enhancement of 1-3 orders of magnitude compared to prior state-of-the-art transparent supercapacitors based on graphene, CNTs, and rGO. These features mainly arise from the exceptionally long length of CNTs, which makes the material behave as a bulk conductor instead of an aspect ratio-limited percolating network, even for electrodes with >90% transparency. The electrical and capacitive figures-of-merit for the transparent conductor are FoMe = 2.7, and FoMc = 0.46 F S-1 cm-2 respectively.

13.
Dalton Trans ; 48(27): 9906-9911, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31240282

RESUMO

The development of rechargeable aluminum-ion batteries (AIBs) has recently attracted much scientific attention due to the low cost and high specific capacity of Al. Most efforts are being concentrated on enhancing the specific charge capacity of active materials for the positive electrode, while other important issues for commercial deployment of this technology have often been overlooked. The aim of this frontier article is not to systematically review the recent advances in the literature, but to bring under the spotlight the critical aspects requiring intensive research activity for paving the way toward the commercialization of AIBs. After a brief revision of the fundaments of an Al-ion battery, the discussion is classified into 5 sections: energy density, specific power, cost, cycle life and safety. Finally, a performance comparison among Al-ion, Li-ion and lead-acid battery technologies on the basis of these 5 primary parameters summarizes the strengths and limitations of Al-ion batteries.

14.
ACS Appl Mater Interfaces ; 10(48): 41246-41256, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30398052

RESUMO

Lately, the field of redox flow batteries is flourishing because of the emergence of new redox chemistries, including organic compounds, new electrolytes, and innovative designs. Recently, we reported an original membrane-free battery concept based on the mutual immiscibility of an aqueous catholyte containing hydroquinone and an ionic liquid anolyte containing para-benzoquinone as redox species. Here, we investigate the versatility of this concept exploring the electrochemical performance of 10 redox electrolytes based on different solvents, such as propylene carbonate, 2-butanone, or neutral-pH media, and containing different redox organic molecules, such as 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine1-oxyl (OH-TEMPO), or substituted anthraquinones. The most representative electrolytes were paired and used as immiscible anolyte-catholyte in 5 different membrane-free batteries. Those batteries with substituted anthraquinones in the anolyte exhibited up to 50% improved open-circuit voltage (2.1 V), an operating voltage of 1.75 V, and 62% higher power density compared with our previous work. On the other hand, the partition coefficient of redox molecules between the two immiscible phases and the inherent self-discharge occurring at the interphase are revealed as intrinsic features affecting the performance of this type of membrane-free battery. It was successfully demonstrated that the functionalization of redox molecules is an interesting strategy to tune the partition coefficients mitigating the crossover that provokes low battery efficiency. As a result, the cycling life of a battery having OH-TEMPO as active species in the catholyte and containing propylene carbonate-based anolyte was evaluated over 300 cycles, achieving 85% capacity retention. These results demonstrated the huge versatility and countless possibilities of this new membrane-free battery concept.

15.
ACS Appl Mater Interfaces ; 10(6): 5760-5770, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29302960

RESUMO

The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.

16.
Sci Rep ; 8(1): 3407, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467512

RESUMO

This work presents a method to produce structural composites capable of energy storage. They are produced by integrating thin sandwich structures of CNT fiber veils and an ionic liquid-based polymer electrolyte between carbon fiber plies, followed by infusion and curing of an epoxy resin. The resulting structure behaves simultaneously as an electric double-layer capacitor and a structural composite, with flexural modulus of 60 GPa and flexural strength of 153 MPa, combined with 88 mF/g of specific capacitance and the highest power (30 W/kg) and energy (37.5 mWh/kg) densities reported so far for structural supercapacitors. In-situ electrochemical measurements during 4-point bending show that electrochemical performance is retained up to fracture, with minor changes in equivalent series resistance for interleaves under compressive stress. En route to improving interlaminar properties we produce grid-shaped interleaves that enable mechanical interconnection of plies by the stiff epoxy. Synchrotron 3D X-ray tomography analysis of the resulting hierarchical structure confirms the formation of interlaminar epoxy joints. The manuscript discusses encapsulation role of epoxy, demonstrated by charge-discharge measurements of composites immersed in water, a deleterious agent for ionic liquids. Finally, we show different architectures free of current collector and electrical insulators, in which both CNT fiber and CF act as active electrodes.

17.
Adv Sci (Weinh) ; 5(10): 1800576, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30356931

RESUMO

Aqueous biphasic systems (ABS) formed by water, ionic liquids (ILs), and salts, in which the two phases are water rich, are demonstrated here to act as potential membrane-free batteries. This concept is feasible due to the selective enrichment of redox organic molecules in each aqueous phase of ABS, which spontaneously form two liquid-phases above given concentrations of salt and IL. Therefore, the required separation of electrolytes in the battery is not driven by an expensive membrane that hampers mass transfer, but instead, by the intrinsic immiscibility of the two liquid phases. Moreover, the crosscontamination typically occurring through the ineffective membranes is determined by the partition coefficients of the active molecules between the two phases. The phase diagrams of a series of IL-based ABS are characterized, the partition coefficients of several redox organic molecules are determined, and the electrochemistry of these redox-active immiscible phases is evaluated, allowing appraisal of the battery performance. Several redox ABS that may be used in total aqueous membrane-free batteries with theoretical battery voltages as high as 1.6 V are identified. The viability of a membrane-free battery composed of an IL-based ABS containing methyl viologen and 2,2,6,6-tetramethyl-1-piperidinyloxy as active species is demonstrated.

18.
J Nanosci Nanotechnol ; 7(8): 2938-41, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17685323

RESUMO

Poly(3,4-ethylenedioxithiophene)/poly(styrene sulphonate) (PEDOT/PSS) aqueous dispersions were mixed with aqueous gold nanoparticle and aqueous silver nanoparticle colloids. PEDOT/gold nanoparticles (Au NP) and PEDOT/silver nanoparticles (Ag NP) films were obtained by solvent casting the corresponding aqueous solutions. The nanocomposite films showed the optical characteristics associated with both the surface plasmon absorption resonance of the metal nanoparticles and the excitation of the bipolaron band of the conducting polymer. As an interesting application we demonstrate the use of metal nanoparticles to tune the color of PEDOT based electrochromic films from blue to violet in the case of Au NP or green in the case of Ag NP.


Assuntos
Eletroquímica/métodos , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Ouro/química , Nanocompostos/química , Nanopartículas/química , Oxirredução , Prata/química , Espectrofotometria , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície , Raios Ultravioleta
19.
Nanoscale ; 8(6): 3620-8, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26809811

RESUMO

In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m(2) g(-1), high electrical conductivity (3.5 × 10(5) S m(-1)) and mechanical properties in the high-performance range including toughness (35 J g(-1)) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg(-1) and 14 Wh kg(-1), respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10,000 cycles of charge-discharge at 3.5 V.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA