Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biochem ; 117(11): 2570-82, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27019087

RESUMO

Ventricular arrhythmias are an important cause of mortality in the acute myocardial infarction (MI). To elucidate the effect of the omega-3 polyunsaturated fatty acids (PUFAs) on ventricular arrhythmias in acute nonreperfused MI, rats were fed with normal or eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA)-enriched diet for 3 weeks. Subsequently the rats were subjected to either MI induction or sham operation. ECG was recorded for 6 h after the operation and episodes of ventricular tachycardia/fibrillation (VT/VF) were identified. Six hours after MI epicardial monophasic action potentials (MAPs) were recorded, cardiomyocyte Ca(2+) handling was assessed and expression of proteins involved in Ca(2+) turnover was studied separately in non-infarcted left ventricle wall and infarct borderzone. EPA and DHA had no effect on occurrence of post-MI ventricular arrhythmias or mortality. Nevertheless, DHA but not EPA prevented Ca(2+) overload in LV cardiomiocytes and improved rate of Ca(2+) transient decay, protecting PMCA and SERCA function. Moreover, both EPA and DHA prevented MI-induced hyperphosphorylation of ryanodine receptors (RyRs) as well as dispersion of action potential duration (APD) in the left ventricular wall. In conclusion, EPA and DHA have no antiarrhythmic effect in the non-reperfused myocardial infarction in the rat, although these omega-3 PUFAs and DHA in particular exhibit several potential antiarrhythmic effects at the subcellular and tissue level, that is, prevent MI-induced abnormalities in Ca(2+) handling and APD dispersion. In this context further studies are needed to see if these potential antiarrhythmic effects could be utilized in the clinical setting. J. Cell. Biochem. 117: 2570-2582, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Coração/efeitos dos fármacos , Infarto do Miocárdio/complicações , Doença Aguda , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Células Cultivadas , Masculino , Substâncias Protetoras/farmacologia , Ratos , Ratos Endogâmicos WKY
2.
Heart Rhythm ; 18(7): 1230-1238, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33737235

RESUMO

Cardiac arrhythmias are a major source of mortality and morbidity. Unfortunately, their treatment remains suboptimal. Major classes of antiarrhythmic drugs pose a significant risk of proarrhythmia, and their side effects often outweigh their benefits. Therefore, implantable devices remain the only truly effective antiarrhythmic therapy, and new strategies of antiarrhythmic treatment are required. Ivabradine is a selective heart rate-reducing agent, an inhibitor of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, currently approved for treatment of coronary artery disease and chronic heart failure. In this review, we focus on the clinical and basic science evidence for the antiarrhythmic and proarrhythmic effects of ivabradine. We attempt to dissect the mechanisms behind the effects of ivabradine and indicate the focus of future studies.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Ivabradina/uso terapêutico , Arritmias Cardíacas/fisiopatologia , Fármacos Cardiovasculares/uso terapêutico , Humanos
3.
Sci Rep ; 10(1): 15027, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929098

RESUMO

Ventricular arrhythmias are a major source of early mortality in acute myocardial infarction (MI) and remain a major therapeutic challenge. Thus we investigated effects of ivabradine, a presumably specific bradycardic agent versus metoprolol, a ß-blocker, at doses offering the same heart rate (HR) reduction, on ventricular arrhythmias in the acute non-reperfused MI in the rat. Immediately after MI induction a single dose of ivabradine/ metoprolol was given. ECG was continuously recorded and ventricular arrhythmias were analyzed. After 6 h epicardial monophasic action potentials (MAPs) were recorded and cardiomyocyte Ca2+ handling was assessed. Both ivabradine and metoprolol reduced HR by 17% and arrhythmic mortality (14% and 19%, respectively, versus 33% in MI, p < 0.05) and ventricular arrhythmias in post-MI rats. Both drugs reduced QTc prolongation and decreased sensitivity of ryanodine receptors in isolated cardiomyocytes, but otherwise had no effect on Ca2+ handling, velocity of conduction or repolarization. We did not find any effects of potential IKr inhibition by ivabradine in this setting. Thus Ivabradine is an equally effective antiarrhythmic agent as metoprolol in early MI in the rat. It could be potentially tested as an alternative antiarrhythmic agent in acute MI when ß-blockers are contraindicated.


Assuntos
Antiarrítmicos/uso terapêutico , Ivabradina/uso terapêutico , Metoprolol/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Taquicardia Ventricular/tratamento farmacológico , Fibrilação Ventricular/tratamento farmacológico , Potenciais de Ação , Animais , Sinalização do Cálcio , Células Cultivadas , Frequência Cardíaca , Masculino , Infarto do Miocárdio/complicações , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/prevenção & controle , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA