Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183572

RESUMO

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Criança , Feminino , Humanos , Lactente , Masculino , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteína Fosfatase 2C/genética , Estudos Retrospectivos , Vômito , Pré-Escolar , Adolescente , Adulto Jovem , Pessoa de Meia-Idade
2.
J Integr Neurosci ; 22(5): 119, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37735126

RESUMO

OBJECTIVE: Individuals with neurodevelopmental disorders often report disturbances in the autonomic nervous system (ANS)-related behavioral regulation, such as sensory sensitivity, anxiety, and emotion dysregulation. Cranial electrotherapy stimulation (CES) is a method of non-invasive neuromodulation presumed to modify behavioral regulation abilities via ANS modulation. Here we examined the feasibility and preliminary effects of a 4-week CES intervention on behavioral regulation in a mixed neurodevelopmental cohort of children, adolescents, and young adults. METHODS: In this single-arm open-label study, 263 individuals aged 4-24 who were receiving clinical care were recruited. Participants received at-home CES treatment using an Alpha-Stim® AID CES device for 20 minutes per day, 5-7 days per week, for four weeks. Before and after the intervention, a parent-report assessment of sensory sensitivities, emotion dysregulation, and anxiety was administered. Adherence, side effects, and tolerance of the CES device were also evaluated at follow-up. RESULTS: Results showed a 75% completion rate, an average tolerance score of 68.2 (out of 100), and an average perceived satisfaction score of 58.8 (out of 100). Additionally, a comparison between pre- and post-CES treatment effects showed a significant reduction in sensory sensitivity, anxiety, and emotion dysregulation in participants following CES treatment. CONCLUSIONS: Results provide justification for future randomized control trials using CES in children and adolescents with behavioral dysregulation. SIGNIFICANCE: CES may be a useful therapeutic tool for alleviating behavioral dysregulation symptoms in children and adolescents with neurodevelopmental differences.


Assuntos
Terapia por Estimulação Elétrica , Transtornos do Neurodesenvolvimento , Adolescente , Criança , Adulto Jovem , Humanos , Ansiedade/terapia
3.
Am J Hum Genet ; 105(3): 631-639, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31353024

RESUMO

Notch signaling is an established developmental pathway for brain morphogenesis. Given that Delta-like 1 (DLL1) is a ligand for the Notch receptor and that a few individuals with developmental delay, intellectual disability, and brain malformations have microdeletions encompassing DLL1, we hypothesized that insufficiency of DLL1 causes a human neurodevelopmental disorder. We performed exome sequencing in individuals with neurodevelopmental disorders. The cohort was identified using known Matchmaker Exchange nodes such as GeneMatcher. This method identified 15 individuals from 12 unrelated families with heterozygous pathogenic DLL1 variants (nonsense, missense, splice site, and one whole gene deletion). The most common features in our cohort were intellectual disability, autism spectrum disorder, seizures, variable brain malformations, muscular hypotonia, and scoliosis. We did not identify an obvious genotype-phenotype correlation. Analysis of one splice site variant showed an in-frame insertion of 12 bp. In conclusion, heterozygous DLL1 pathogenic variants cause a variable neurodevelopmental phenotype and multi-systemic features. The clinical and molecular data support haploinsufficiency as a mechanism for the pathogenesis of this DLL1-related disorder and affirm the importance of DLL1 in human brain development.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Haploinsuficiência , Proteínas de Membrana/genética , Transtornos do Neurodesenvolvimento/genética , Estudos de Coortes , Feminino , Humanos , Ligantes , Masculino , Linhagem , Sequenciamento do Exoma
4.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34185323

RESUMO

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Assuntos
Epilepsia/diagnóstico por imagem , Epilepsia/genética , Variação Genética/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Criança , Estudos de Coortes , Epilepsia/metabolismo , Feminino , Seguimentos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Adulto Jovem
5.
Am J Med Genet A ; 185(4): 1076-1080, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33438828

RESUMO

De novo heterozygous variants in the brain-specific transcription factor Neuronal Differentiation Factor 2 (NEUROD2) have been recently associated with early-onset epileptic encephalopathy and developmental delay. Here, we report an adolescent with developmental delay without seizures who was found to have a novel de novo heterozygous NEUROD2 missense variant, p.(Leu163Pro). Functional testing using an in vivo assay of neuronal differentiation in Xenopus laevis tadpoles demonstrated that the patient variant of NEUROD2 displays minimal protein activity, strongly suggesting a loss of function effect. In contrast, a second rare NEUROD2 variant, p.(Ala235Thr), identified in an adolescent with developmental delay but lacking parental studies for inheritance, showed normal in vivo NEUROD2 activity. We thus provide clinical, genetic, and functional evidence that NEUROD2 variants can lead to developmental delay without accompanying early-onset seizures, and demonstrate how functional testing can complement genetic data when determining variant pathogenicity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/patologia , Deficiências do Desenvolvimento/genética , Neuropeptídeos/genética , Adolescente , Animais , Encéfalo/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Feminino , Heterozigoto , Humanos , Larva/genética , Masculino , Fenótipo , Convulsões/genética , Convulsões/patologia , Xenopus laevis/genética
6.
J Med Genet ; 57(10): 717-724, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32152250

RESUMO

BACKGROUND: Rare variants in hundreds of genes have been implicated in developmental delay (DD), intellectual disability (ID) and neurobehavioural phenotypes. TNRC6B encodes a protein important for RNA silencing. Heterozygous truncating variants have been reported in three patients from large cohorts with autism, but no full phenotypic characterisation was described. METHODS: Clinical and molecular characterisation was performed on 17 patients with TNRC6B variants. Clinical data were obtained by retrospective chart review, parent interviews, direct patient interaction with providers and formal neuropsychological evaluation. RESULTS: Clinical findings included DD/ID (17/17) (speech delay in 94% (16/17), fine motor delay in 82% (14/17) and gross motor delay in 71% (12/17) of subjects), autism or autistic traits (13/17), attention deficit and hyperactivity disorder (ADHD) (11/17), other behavioural problems (7/17) and musculoskeletal findings (12/17). Other congenital malformations or clinical findings were occasionally documented. The majority of patients exhibited some dysmorphic features but no recognisable gestalt was identified. 17 heterozygous TNRC6B variants were identified in 12 male and five female unrelated subjects by exome sequencing (14), a targeted panel (2) and a chromosomal microarray (1). The variants were nonsense (7), frameshift (5), splice site (2), intragenic deletions (2) and missense (1). CONCLUSIONS: Variants in TNRC6B cause a novel genetic disorder characterised by recurrent neurocognitive and behavioural phenotypes featuring DD/ID, autism, ADHD and other behavioural abnormalities. Our data highly suggest that haploinsufficiency is the most likely pathogenic mechanism. TNRC6B should be added to the growing list of genes of the RNA-induced silencing complex associated with ID/DD, autism and ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Autístico/genética , Predisposição Genética para Doença , Proteínas de Ligação a RNA/genética , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno Autístico/complicações , Transtorno Autístico/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/patologia , Masculino , Transtornos das Habilidades Motoras/genética , Transtornos das Habilidades Motoras/patologia , Mutação/genética , Fenótipo , Sequenciamento do Exoma
7.
Mol Pharmacol ; 98(3): 192-202, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32580997

RESUMO

Neuronal voltage-gated potassium channels (Kv) are critical regulators of electrical activity in the central nervous system. Mutations in the KCNQ (Kv7) ion channel family are linked to epilepsy and neurodevelopmental disorders. These channels underlie the neuronal "M-current" and cluster in the axon initial segment to regulate the firing of action potentials. There is general consensus that KCNQ channel assembly and heteromerization are controlled by C-terminal helices. We identified a pediatric patient with neurodevelopmental disability, including autism traits, inattention and hyperactivity, and ataxia, who carries a de novo frameshift mutation in KCNQ3 (KCNQ3-FS534), leading to truncation of ∼300 amino acids in the C terminus. We investigated possible molecular mechanisms of channel dysfunction, including haplo-insufficiency or a dominant-negative effect caused by the assembly of truncated KCNQ3 and functional KCNQ2 subunits. We also used a recently recognized property of the KCNQ2-specific activator ICA-069673 to identify assembly of heteromeric channels. ICA-069673 exhibits a functional signature that depends on the subunit composition of KCNQ2/3 channels, allowing us to determine whether truncated KCNQ3 subunits can assemble with KCNQ2. Our findings demonstrate that although the KCNQ3-FS534 mutant does not generate functional channels on its own, large C-terminal truncations of KCNQ3 (including the KCNQ3-FS534 mutation) assemble efficiently with KCNQ2 but fail to promote or stabilize KCNQ2/KCNQ3 heteromeric channel expression. Therefore, the frequent assumption that pathologies linked to KCNQ3 truncations arise from haplo-insufficiency should be reconsidered in some cases. Subtype-specific channel activators like ICA-069673 are a reliable tool to identify heteromeric assembly of KCNQ2 and KCNQ3. SIGNIFICANCE STATEMENT: Mutations that truncate the C terminus of neuronal Kv7/KCNQ channels are linked to a spectrum of seizure disorders. One role of the multifunctional KCNQ C terminus is to mediate subtype-specific assembly of heteromeric KCNQ channels. This study describes the use of a subtype-specific Kv7 activator to assess assembly of heteromeric KCNQ2/KCNQ3 (Kv7.2/Kv7.3) channels and demonstrates that large disease-linked and experimentally generated C-terminal truncated KCNQ3 mutants retain the ability to assemble with KCNQ2.


Assuntos
Mutação da Fase de Leitura , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/química , Canal de Potássio KCNQ3/metabolismo , Transtornos do Neurodesenvolvimento/genética , Animais , Criança , Humanos , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ3/genética , Masculino , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Xenopus laevis
8.
Am J Hum Genet ; 100(4): 650-658, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28343630

RESUMO

Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders.


Assuntos
Éxons , Deficiência Intelectual/genética , Mutação , Proteína Fosfatase 2C/genética , Adolescente , Ciclo Celular , Criança , Pré-Escolar , Humanos , Deficiência Intelectual/patologia , Adulto Jovem
9.
Genet Med ; 21(9): 2059-2069, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30923367

RESUMO

PURPOSE: To investigate the effect of different DEAF1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and on DEAF1 activity in vitro. METHODS: We assembled a cohort of 23 patients with de novo and biallelic DEAF1 variants, described the genotype-phenotype correlation, and investigated the differential effect of de novo and recessive variants on transcription assays using DEAF1 and Eif4g3 promoter luciferase constructs. RESULTS: The proportion of the most prevalent phenotypic features, including intellectual disability, speech delay, motor delay, autism, sleep disturbances, and a high pain threshold, were not significantly different in patients with biallelic and pathogenic de novo DEAF1 variants. However, microcephaly was exclusively observed in patients with recessive variants (p < 0.0001). CONCLUSION: We propose that different variants in the DEAF1 gene result in a phenotypic spectrum centered around neurodevelopmental delay. While a pathogenic de novo dominant variant would also incapacitate the product of the wild-type allele and result in a dominant-negative effect, a combination of two recessive variants would result in a partial loss of function. Because the clinical picture can be nonspecific, detailed phenotype information, segregation, and functional analysis are fundamental to determine the pathogenicity of novel variants and to improve the care of these patients.


Assuntos
Proteínas de Ligação a DNA/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Microcefalia/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Alelos , Transtorno Autístico/genética , Transtorno Autístico/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Exoma/genética , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/patologia , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/patologia , Masculino , Microcefalia/patologia , Mutação de Sentido Incorreto/genética , Adulto Jovem
10.
J Neurosci ; 36(16): 4522-33, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27098695

RESUMO

The development of hemispheric lateralization for language is poorly understood. In one hypothesis, early asymmetric gene expression assigns language to the left hemisphere. In an alternate view, language is represented a priori in both hemispheres and lateralization emerges via cross-hemispheric communication through the corpus callosum. To address this second hypothesis, we capitalized on the high temporal and spatial resolution of magnetoencephalographic imaging to measure cortical activity during language processing, speech preparation, and speech execution in 25 participants with agenesis of the corpus callosum (AgCC) and 21 matched neurotypical individuals. In contrast to strongly lateralized left hemisphere activations for language in neurotypical controls, participants with complete or partial AgCC exhibited bilateral hemispheric activations in both auditory or visually driven language tasks, with complete AgCC participants showing significantly more right hemisphere activations than controls or than individuals with partial AgCC. In AgCC individuals, language laterality positively correlated with verbal IQ. These findings suggest that the corpus callosum helps to drive language lateralization. SIGNIFICANCE STATEMENT: The role that corpus callosum development has on the hemispheric specialization of language is poorly understood. Here, we used magnetoencephalographic imaging during linguistic tests (verb generation, picture naming) to test for hemispheric dominance in patients with agenesis of the corpus callosum (AgCC) and found reduced laterality (i.e., greater likelihood of bilaterality or right hemisphere dominance) in this cohort compared with controls, especially in patients with complete agenesis. Laterality was positively correlated with behavioral measures of verbal intelligence. These findings provide support for the hypothesis that the callosum aids in functional specialization throughout neural development and that the loss of this mechanism correlates with impairments in verbal performance.


Assuntos
Agenesia do Corpo Caloso/fisiopatologia , Corpo Caloso/fisiologia , Lateralidade Funcional/fisiologia , Idioma , Fala/fisiologia , Estimulação Acústica/métodos , Adolescente , Adulto , Agenesia do Corpo Caloso/diagnóstico , Estudos de Coortes , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Adulto Jovem
11.
Brain Behav Immun ; 59: 245-252, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27622676

RESUMO

BACKGROUND: Chronic psychological stress is a risk factor for cardiovascular disease and mortality. Circulating hematopoietic progenitor cells (CPCs) maintain vascular homeostasis, correlate with preclinical atherosclerosis, and prospectively predict cardiovascular events. We hypothesize that (1) chronic caregiving stress is related to reduced CPC number, and (2) this may be explained in part by negative interactions within the family. METHODS: We investigated levels of stress and CPCs in 68 healthy mothers - 31 of these had children with an autism spectrum disorder (M-ASD) and 37 had neurotypical children (M-NT). Participants provided fasting blood samples, and CD45+CD34+KDR+ and CD45+CD133+KDR+ CPCs were assayed by flow cytometry. We averaged the blom-transformed scores of both CPCs to create one index. Participants completed the perceived stress scale (PSS), the inventory for depressive symptoms (IDS), and reported on daily interactions with their children and partners, averaged over 7 nights. RESULTS: M-ASD exhibited lower CPCs than M-NT (Cohen's d=0.83; p⩽0.01), controlling for age, BMI, and physical activity. Across the whole sample, positive interactions were related to higher CPCs, and negative interactions to lower CPCs (allp's<0.05). The adverse effects of group on CPCs were significantly mediated through negative interactions with the child (indirect ß=-0.24, p⩽0.01). In the full model, greater age (ß=-0.19, p=0.04), BMI (ß=-0.18, p=0.04), and negative interactions with the child (ß=-0.33, p<0.01) were independently associated with lower CPCs. M-ASD had a less healthy lipid profile (total cholesterol/HDL), which in turn, was associated with lower CPCs. CONCLUSIONS: Chronic stress adversely impacts CPC number, an early-stage biomarker that predicts subclinical atherosclerosis and future CVD events, independent of traditional cardiovascular risk factors and inflammatory factors. Among maternal caregivers, child-related interpersonal stress appears to be a key psychological predictor of stress-related CVD risk.


Assuntos
Transtorno do Espectro Autista/psicologia , Células-Tronco Hematopoéticas/metabolismo , Comportamento Materno , Estresse Psicológico/sangue , Adolescente , Adulto , Transtorno do Espectro Autista/metabolismo , Doenças Cardiovasculares/sangue , Cuidadores/psicologia , Contagem de Células , Criança , Pré-Escolar , Depressão/psicologia , Feminino , Humanos , Metabolismo dos Lipídeos , Receptores de Lipopolissacarídeos/imunologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Cônjuges/psicologia , Adulto Jovem
12.
Hum Brain Mapp ; 37(8): 2833-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27219475

RESUMO

Copy number variants at the 16p11.2 chromosomal locus are associated with several neuropsychiatric disorders, including autism, schizophrenia, bipolar disorder, attention-deficit hyperactivity disorder, and speech and language disorders. A gene dosage dependence has been suggested, with 16p11.2 deletion carriers demonstrating higher body mass index and head circumference, and 16p11.2 duplication carriers demonstrating lower body mass index and head circumference. Here, we use diffusion tensor imaging to elucidate this reciprocal relationship in white matter organization, showing widespread increases of fractional anisotropy throughout the supratentorial white matter in pediatric deletion carriers and, in contrast, extensive decreases of white matter fractional anisotropy in pediatric and adult duplication carriers. We find associations of these white matter alterations with cognitive and behavioral impairments. We further demonstrate the value of imaging metrics for characterizing the copy number variant phenotype by employing linear discriminant analysis to predict the gene dosage status of the study subjects. These results show an effect of 16p11.2 gene dosage on white matter microstructure, and further suggest that opposite changes in diffusion tensor imaging metrics can lead to similar cognitive and behavioral deficits. Given the large effect sizes found in this study, our results support the view that specific genetic variations are more strongly associated with specific brain alterations than are shared neuropsychiatric diagnoses. Hum Brain Mapp 37:2833-2848, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/patologia , Cromossomos Humanos Par 16/genética , Substância Branca/patologia , Adolescente , Adulto , Criança , Deleção Cromossômica , Duplicação Cromossômica , Imagem de Tensor de Difusão , Feminino , Dosagem de Genes , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Am J Med Genet A ; 170(11): 2943-2955, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410714

RESUMO

Chromosome 16p11.2 deletions and duplications are among the most frequent genetic etiologies of autism spectrum disorder (ASD) and other neurodevelopmental disorders, but detailed descriptions of their neurologic phenotypes have not yet been completed. We utilized standardized examination and history methods to characterize a neurologic phenotype in 136 carriers of 16p11.2 deletion and 110 carriers of 16p11.2 duplication-the largest cohort to date of uniformly and comprehensively characterized individuals with the same 16p copy number variants (CNVs). The 16p11.2 deletion neurologic phenotype is characterized by highly prevalent speech articulation abnormalities, limb and trunk hypotonia with hyporeflexia, abnormalities of agility, sacral dimples, seizures/epilepsy, large head size/macrocephaly, and Chiari I/cerebellar tonsillar ectopia. Speech articulation abnormalities, hypotonia, abnormal agility, sacral dimples, and seizures/epilepsy are also seen in duplication carriers, along with more prominent hyperreflexia; less, though still prevalent, hyporeflexia; highly prevalent action tremor; small head size/microcephaly; and cerebral white matter/corpus callosum abnormalities and ventricular enlargement. The neurologic phenotypes of these reciprocal 16p11.2 CNVs include both shared and distinct features. Reciprocal phenotypic characteristics of predominant hypo- versus hyperreflexia and macro- versus microcephaly may reflect opposite neurobiological abnormalities with converging effects causing the functional impairments shared between 16p11.2 deletion and duplication carriers (i.e., abnormal motor agility and articulation). While the phenotypes exhibit overlap with other genetically-caused neurodevelopmental disorders, clinicians should be aware of the more striking features-such as the speech and motor impairments, growth abnormalities, tremor, and sacral dimples-when evaluating individuals with developmental delay, intellectual disability, ASD, and/or language disorders. © 2016 Wiley Periodicals, Inc.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Duplicação Cromossômica , Cromossomos Humanos Par 16 , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/genética , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
J Neurosci ; 34(18): 6214-23, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24790192

RESUMO

Copy number variants (CNVs) of the chromosomal locus 16p11.2, consisting of either deletions or duplications, have been implicated in autism, schizophrenia, epilepsy, and other neuropsychiatric disorders. Since abnormal white matter microstructure can be seen in these more broadly defined clinical disorders, we used diffusion magnetic resonance imaging and tract-based spatial statistics to investigate white matter microstructural integrity in human children with 16p11.2 deletions. We show that deletion carriers, compared with typically developing matched controls, have increased axial diffusivity (AD) in many major central white matter tracts, including the anterior corpus callosum as well as bilateral internal and external capsules. Higher AD correlated with lower nonverbal IQ in the deletion carriers, but not controls. Increases in fractional anisotropy and mean diffusivity were also found in some of the same tracts with elevated AD. Closer examination with neurite orientation dispersion and density imaging revealed that fiber orientation dispersion was decreased in some central white matter tracts. Notably, these alterations of white matter are unlike microstructural differences reported for any other neurodevelopmental disorders, including autism spectrum disorders that have phenotypic overlap with the deletion carriers. These findings suggest that deletion of the 16p11.2 locus is associated with a unique widespread pattern of aberrant white matter microstructure that may underlie the impaired cognition characteristic of this CNV.


Assuntos
Transtorno Autístico , Encéfalo/patologia , Deleção Cromossômica , Transtornos Cromossômicos , Deficiência Intelectual , Leucoencefalopatias/etiologia , Fibras Nervosas Mielinizadas/patologia , Adolescente , Anisotropia , Transtorno Autístico/complicações , Transtorno Autístico/genética , Transtorno Autístico/patologia , Biofísica , Estudos de Casos e Controles , Criança , Transtornos Cromossômicos/complicações , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 16/genética , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/genética , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Leucoencefalopatias/genética , Masculino , Modelos Neurológicos , Estatística como Assunto
15.
J Int Neuropsychol Soc ; 21(6): 444-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26145730

RESUMO

The aim of this study was to compare sensory processing in typically developing children (TDC), children with Autism Spectrum Disorder (ASD), and those with sensory processing dysfunction (SPD) in the absence of an ASD. Performance-based measures of auditory and tactile processing were compared between male children ages 8-12 years assigned to an ASD (N=20), SPD (N=15), or TDC group (N=19). Both the SPD and ASD groups were impaired relative to the TDC group on a performance-based measure of tactile processing (right-handed graphesthesia). In contrast, only the ASD group showed significant impairment on an auditory processing index assessing dichotic listening, temporal patterning, and auditory discrimination. Furthermore, this impaired auditory processing was associated with parent-rated communication skills for both the ASD group and the combined study sample. No significant group differences were detected on measures of left-handed graphesthesia, tactile sensitivity, or form discrimination; however, more participants in the SPD group demonstrated a higher tactile detection threshold (60%) compared to the TDC (26.7%) and ASD groups (35%). This study provides support for use of performance-based measures in the assessment of children with ASD and SPD and highlights the need to better understand how sensory processing affects the higher order cognitive abilities associated with ASD, such as verbal and non-verbal communication, regardless of diagnostic classification.


Assuntos
Transtorno do Espectro Autista/complicações , Transtorno Autístico/complicações , Deficiências do Desenvolvimento/complicações , Transtornos da Percepção/etiologia , Transtornos de Sensação/etiologia , Tato/fisiologia , Estimulação Acústica , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Criança , Avaliação da Deficiência , Lateralidade Funcional , Humanos , Masculino , Testes Neuropsicológicos , Índice de Gravidade de Doença
16.
J Med Genet ; 51(1): 10-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24101678

RESUMO

BACKGROUND: Mutations in Ras/mitogen-activated protein kinase (Ras/MAPK) pathway genes lead to a class of disorders known as RASopathies, including neurofibromatosis type 1 (NF1), Noonan syndrome (NS), Costello syndrome (CS), and cardio-facio-cutaneous syndrome (CFC). Previous work has suggested potential genetic and phenotypic overlap between dysregulation of Ras/MAPK signalling and autism spectrum disorders (ASD). Although the literature offers conflicting evidence for association of NF1 and autism, there has been no systematic evaluation of autism traits in the RASopathies as a class to support a role for germline Ras/MAPK activation in ASDs. METHODS: We examined the association of autism traits with NF1, NS, CS and CFC, comparing affected probands with unaffected sibling controls and subjects with idiopathic ASDs using the qualitative Social Communication Questionnaire (SCQ) and the quantitative Social Responsiveness Scale (SRS). RESULTS: Each of the four major RASopathies showed evidence for increased qualitative and quantitative autism traits compared with sibling controls. Further, each RASopathy exhibited a distinct distribution of quantitative social impairment. Levels of social responsiveness show some evidence of correlation between sibling pairs, and autism-like impairment showed a male bias similar to idiopathic ASDs. CONCLUSIONS: Higher prevalence and severity of autism traits in RASopathies compared to unaffected siblings suggests that dysregulation of Ras/MAPK signalling during development may be implicated in ASD risk. Evidence for sex bias and potential sibling correlation suggests that autism traits in the RASopathies share characteristics with autism traits in the general population and clinical ASD population and can shed light on idiopathic ASDs.


Assuntos
Transtorno Autístico/genética , Síndrome de Costello/genética , Displasia Ectodérmica/genética , Insuficiência de Crescimento/genética , Cardiopatias Congênitas/genética , Síndrome de Noonan/genética , Característica Quantitativa Herdável , Proteínas ras/genética , Adolescente , Adulto , Transtorno Autístico/diagnóstico , Criança , Síndrome de Costello/diagnóstico , Diagnóstico Diferencial , Displasia Ectodérmica/diagnóstico , Fácies , Insuficiência de Crescimento/diagnóstico , Feminino , Cardiopatias Congênitas/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Testes Neuropsicológicos , Síndrome de Noonan/diagnóstico , Avaliação de Resultados da Assistência ao Paciente , Fenótipo , Prevalência , Fatores Sexuais , Irmãos , Transdução de Sinais , Inquéritos e Questionários , Adulto Jovem , Proteínas ras/metabolismo
17.
Pediatr Dermatol ; 32(4): 447-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25779667

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition that effects verbal and nonverbal communication and social cognition and often presents with altered sensory processing, stereotyped behavior, and restricted interests. The prevalence of this diagnosis has increased markedly over the past two decades. Dermatologists undoubtedly will be evaluating and managing more patients with this diagnosis, but there has been little written regarding the dermatologic care of patients with ASD. Difficulties with communication and sensory processing create significant challenges in clinical evaluation and management. Individuals with ASD are also at higher risk for certain dermatologic conditions. This review is intended to build an awareness of the complexity of caring for individuals with ASD and discuss strategies that can help improve the dermatologic care of these patients.


Assuntos
Transtorno do Espectro Autista , Dermatopatias/terapia , Criança , Humanos
18.
J Neurodev Disord ; 16(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166648

RESUMO

BACKGROUND: Sensory processing dysfunction (SPD) is linked to altered white matter (WM) microstructure in school-age children. Sensory over-responsivity (SOR), a form of SPD, affects at least 2.5% of all children and has substantial deleterious impact on learning and mental health. However, SOR has not been well studied using microstructural imaging such as diffusion MRI (dMRI). Since SOR involves hypersensitivity to external stimuli, we test the hypothesis that children with SOR require compensatory neuroplasticity in the form of superior WM microstructural integrity to protect against internalizing behavior, leaving those with impaired WM microstructure vulnerable to somatization and depression. METHODS: Children ages 8-12 years old with neurodevelopmental concerns were assessed for SOR using a comprehensive structured clinical evaluation, the Sensory Processing 3 Dimensions Assessment, and underwent 3 Tesla MRI with multishell multiband dMRI. Tract-based spatial statistics was used to measure diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) metrics from global WM and nineteen selected WM tracts. Correlations of DTI and NODDI measures with measures of somatization and emotional disturbance from the Behavioral Assessment System for Children, 3rd edition (BASC-3), were computed in the SOR group and in matched children with neurodevelopmental concerns but not SOR. RESULTS: Global WM fractional anisotropy (FA) is negatively correlated with somatization and with emotional disturbance in the SOR group but not the non-SOR group. Also observed in children with SOR are positive correlations of radial diffusivity (RD) and free water fraction (FISO) with somatization and, in most cases, emotional disturbance. These effects are significant in boys with SOR, whereas the study is underpowered for girls. The most affected white matter are medial lemniscus and internal capsule sensory tracts, although effects of SOR are observed in many cerebral, cerebellar, and brainstem tracts. CONCLUSION: White matter microstructure is related to affective behavior in children with SOR.


Assuntos
Substância Branca , Masculino , Criança , Feminino , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Cerebelo
19.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352614

RESUMO

Sensory processing dysfunction not only affects most individuals with autism spectrum disorder (ASD), but at least 5% of children without ASD also experience dysfunctional sensory processing. Our understanding of the relationship between sensory dysfunction and resting state brain activity is still emerging. This study compared long-range resting state functional connectivity of neural oscillatory behavior in children aged 8-12 years with autism spectrum disorder (ASD; N=18), those with sensory processing dysfunction (SPD; N=18) who do not meet ASD criteria, and typically developing control participants (TDC; N=24) using magnetoencephalography (MEG). Functional connectivity analyses were performed in the alpha and beta frequency bands, which are known to be implicated in sensory information processing. Group differences in functional connectivity and associations between sensory abilities and functional connectivity were examined. Distinct patterns of functional connectivity differences between ASD and SPD groups were found only in the beta band, but not in the alpha band. In both alpha and beta bands, ASD and SPD cohorts differed from the TDC cohort. Somatosensory cortical beta-band functional connectivity was associated with tactile processing abilities, while higher-order auditory cortical alpha-band functional connectivity was associated with auditory processing abilities. These findings demonstrate distinct long-range neural synchrony alterations in SPD and ASD that are associated with sensory processing abilities. Neural synchrony measures could serve as potential sensitive biomarkers for ASD and SPD.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37920687

RESUMO

Introduction: Studies examining sustained attention abilities typically utilize metrics that quantify performance on vigilance tasks, such as response time and response time variability. However, approaches that assess the duration that an individual can maintain their attention over time are lacking. Methods: Here we developed an objective attention span metric that quantified the maximum amount of time that a participant continuously maintained an optimal "in the zone" sustained attention state while performing a continuous performance task. Results: In a population of 262 individuals aged 7-85, we showed that attention span was longer in young adults than in children and older adults. Furthermore, declines in attention span over time during task engagement were related to clinical symptoms of inattention in children. Discussion: These results suggest that quantifying attention span is a unique and meaningful method of assessing sustained attention across the lifespan and in populations with inattention symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA