Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Eur J Neurosci ; 56(5): 4546-4557, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35831240

RESUMO

Studies regarding the animals' innate preferences help elucidate and avoid probable sources of bias and serve as a reference to improve and develop new behavioural tasks. In zebrafish research, data obtained in behavioural assessments are often not replicated between research groups or even inside the same laboratory raising huge concerns about replicability and reproducibility. Among the potential causes that are not well considered, sexual differences can be a probable source of bias. Thus, this study aimed to investigate the male and female zebrafish directional and colour preferences in the plus-maze and T-maze behavioural tasks. Experiment 1 evaluated directional preference, and experiment 2 evaluated colour preference in a plus-maze task; experiment 3 evaluated preference between black or white in a T-maze task. Individual preferences were expressed as the percentage of time spent in each zone. Our results showed that male and female zebrafish demonstrated no difference in directional preference in the plus-maze task. Surprisingly, male and female zebrafish showed colour preference differences in the plus-maze task; males did not show any colour preference, while female zebrafish demonstrated a red preference compared to white, blue and yellow colours. Moreover, both male and female zebrafish demonstrated a strong black colour preference compared to the white colour in the T-maze task. Our findings characterized the spontaneous preference of male and female zebrafish for direction and colour, identifying possible biases and providing insights that contribute to the standardization of future protocols.


Assuntos
Percepção de Cores , Peixe-Zebra , Animais , Cor , Feminino , Masculino , Reprodutibilidade dos Testes
2.
J Neurosci Res ; 99(11): 2844-2859, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34496062

RESUMO

Schizophrenia pathophysiology has been associated with dopaminergic hyperactivity, NMDA receptor hypofunction, and redox dysregulation. Most behavioral assays and animal models to study this condition were developed in rodents, leaving room for species-specific biases that could be avoided by cross-species approaches. As MK-801 and amphetamine are largely used in mice and rats to mimic schizophrenia features, this study aimed to compare the effects of these drugs in several zebrafish (Danio rerio) behavioral assays. Male and female adult zebrafish were exposed to MK-801 (1, 5, and 10 µM) or amphetamine (0.625, 2.5, and 10 mg/L) and observed in paradigms of locomotor activity and social behavior. Oxidative parameters were quantified in brain tissue. Our results demonstrate that MK-801 disrupted social interaction, an effect that resembles the negative symptoms of schizophrenia. It also altered locomotion in a context-dependent manner, with hyperactivity when fish were tested in the presence of social cues and hypoactivity when tested alone. On the other hand, exposure to amphetamine was devoid of effects on locomotion and social behavior, while it increased lipid peroxidation in the brain. Key outcomes induced by MK-801 in rodents, such as social interaction deficit and locomotor alterations, were replicated in zebrafish, corroborating previous studies and reinforcing the use of zebrafish to study schizophrenia-related endophenotypes. More studies are necessary to assess the predictive validity of preclinical paradigms with this species and ultimately optimize the screening of potential novel treatments.


Assuntos
Maleato de Dizocilpina , Esquizofrenia , Anfetamina/farmacologia , Animais , Maleato de Dizocilpina/efeitos adversos , Endofenótipos , Feminino , Masculino , Camundongos , Ratos , Receptores de N-Metil-D-Aspartato , Esquizofrenia/induzido quimicamente , Peixe-Zebra/fisiologia
3.
Ecotoxicology ; 29(2): 140-147, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31865514

RESUMO

Pesticide commercial mixtures, including the insecticide fipronil and the fungicides pyraclostrobin and methyl-thiophanate, have been used in concomitant pest control, facilitating agricultural management. Their widespread use can lead to soil and water contamination and potentially induce damages in the ecosystem, producing toxic effects in non-target organisms. Despite their toxicological potential, their effects on behavioral and biochemical parameters are not well understood. Here we investigated the effects of the mixture of fipronil and fungicides (MFF) pyraclostrobin and methyl- thiophanate on behavioral and biochemical parameters of oxidative stress in adult zebrafish. Animals exposed to the highest MFF tested concentration showed a decrease in the total distance traveled and in the number of crossings in the different zones of the tank. Furthermore, animals exposed to highest MFF tested concentration spent more time in water surface. In addition, our data showed that the exposure to this preparation promoted a decrease in non-protein thiol content as well as in catalase activity. Finally, pesticide exposure induced an increase in the superoxide dismutase/catalase ratio. Our results indicate that alterations in behavioral and oxidative parameters are involved in MFF toxicity in zebrafish. The antioxidant mechanisms analyzed were altered in concentrations that did not affect zebrafish behavior. Therefore, the assessment of oxidative stress parameters in zebrafish brains could be very useful to detect the early effects of environmental exposure to the MFF.


Assuntos
Pirazóis/toxicidade , Peixe-Zebra/fisiologia , Animais , Antioxidantes , Comportamento Animal/fisiologia , Fungicidas Industriais , Estresse Oxidativo/fisiologia , Poluentes Químicos da Água/toxicidade
4.
J Environ Manage ; 244: 294-303, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128334

RESUMO

The use of waste materials in the building industry is a major challenge for eco-efficient construction. Brazil generates more than 3 million tons of waste foundry sand (WFS) annually, making it one of the largest industrial wastes produced in the country. This work proposes the use of WFS in two novel ways: in conventional concrete by WFS calcination, and in dry-mix concrete for the production of concrete blocks. For the conventional mixture study, mortars with 0, 50 and 100% replacement of natural sand by WFS and calcined WFS (CFS) were produced. The fresh state properties, volumetric variation, cement hydration and 28-days compressive strength of the mortars were evaluated. For the dry-mix concrete study, compositions with two densities (2.20 and 2.25 g/cm3), three cement contents and 0, 50 and 100% WFS in natural sand replacement were produced in the laboratory. Furthermore, concrete blocks of different strength ranges and 0 and 100% WFS in natural sand replacement were produced in a concrete block manufacturing plant for full-scale testing. The results showed that the use of WFS led to reductions in flowability and compressive strength of the mortars, but did not cause expansion as initially expected. In contrast, the use of up to 100% CFS resulted in mortars with flowability and compressive strength similar to those of the reference. WFS calcination removed the pulverized coal and may have formed pozzolanic phases in the clay material. As a result, the CFS presented performance similar to that of natural sand. In dry-mix concrete, the laboratory results showed that the use of 100% WFS resulted in similar strengths to the reference for concretes of up to 20 MPa. Finally, full-scale tests showed that it was possible to produce concrete blocks with 100% WFS and strengths compatible to the reference.


Assuntos
Materiais de Construção , Resíduos Industriais , Brasil , Força Compressiva , Dióxido de Silício
5.
Neurochem Res ; 43(2): 458-464, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29196951

RESUMO

Alcohol hangover refers to unpleasant symptoms experienced as a direct consequence of a binge drinking episode. The effects observed in this condition are related to the increase in alcohol metabolites and imbalance in oxidative status. N-acetylcysteine (NAC) is a mucolytic agent and an antidote for paracetamol overdose. Preclinical and clinical studies have shown that NAC is a multi-target drug acting through neuroprotective, antioxidant and neurotrophic mechanisms as well as a glutamate modulator. The aim of this study was to investigate the effects of NAC in zebrafish acutely exposed to ethanol (EtOH). Animals pretreated or not with NAC (1 mg/L, 10 min) were exposed for 60 min to standard tank water (EtOH-) or to 1% EtOH (EtOH+) to evaluate anxiety-like behavior and locomotion in the novel tank test and oxidative damage in the brain. Zebrafish (Danio rerio) exposed to EtOH displayed a decrease in the distance traveled, crossings, entries and time spent in the top area in the novel tank test. Exposure to EtOH also caused oxidative damage, shown by increased lipid peroxidation, decreased non-protein thiols and increased production of reactive oxygen species (DCF assay). NAC prevented both the behavioral alterations and the oxidative stress observed in EtOH+ animals. Given the effects of NAC in preventing the acute behavioral and biochemical effects of EtOH, additional studies are warranted to further investigate the basis of its anecdotal use to prevent hangover.


Assuntos
Acetilcisteína/farmacologia , Comportamento Animal/efeitos dos fármacos , Etanol/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Ansiedade/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Etanol/administração & dosagem , Feminino , Masculino , Peixe-Zebra
6.
J Exp Biol ; 221(Pt 4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361609

RESUMO

Several studies have shown that manipulations to the housing environment modulate susceptibility to stress in laboratory animals, mainly in rodents. Environmental enrichment (EE) is one such manipulation that promotes neuroprotection and neurogenesis, besides affecting behaviors such as drug self-administration. Zebrafish are a popular and useful animal model for behavioral neuroscience studies; however, studies evaluating the impact of housing conditions in this species are scarce. In this study, we verified the effects of EE on behavioral (novel tank test) and biochemical [cortisol and reactive oxygen species (ROS)] parameters in zebrafish submitted to unpredictable chronic stress (UCS). Consistent with our previous findings, UCS increased anxiety-like behavior, cortisol and ROS levels in zebrafish. EE for 21 or 28 days attenuated the effects induced by UCS on behavior and cortisol, and prevented the effects on ROS levels. Our findings reinforce the idea that EE exerts neuromodulatory effects across species, reducing vulnerability to stress and its biochemical impact. Also, these results indicate that zebrafish is a suitable model animal to study the behavioral effects and neurobiological mechanisms related to EE.


Assuntos
Bem-Estar do Animal , Meio Ambiente , Estresse Fisiológico , Peixe-Zebra/fisiologia , Animais , Feminino , Abrigo para Animais , Hidrocortisona/metabolismo , Masculino , Modelos Animais , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo
7.
Pharm Biol ; 53(10): 1488-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25898223

RESUMO

CONTEXT: Despite several studies on the effects of Solidago chilensis Meyen (Asteraceae), the phytochemical and hypolipidemic properties remain underappreciated. OBJECTIVE: This study evaluates the hypolipidemic and antioxidant effects of hydroalcoholic extract (HE) and quercetrin from S. chilensis aerial parts in cholesterol-fed rats. MATERIALS AND METHODS: The HE was analyzed by high-performance liquid chromatography, followed by quercetrin isolation. Hypercholesterolemic rats (1% cholesterol and 0.5% cholic acid for 15 d) were treated with HE (150, 300, and 600 mg/kg p.o.; n = 6), simvastatin (4 mg/kg p.o.; n = 6), or quercetrin (10 mg/kg p.o.; n = 6) once a day for 30 d. During this period, a high-cholesterol diet was maintained until the 30th day of treatment. RESULTS: Rats treated with HE (150, 300, and 600 mg/kg) and quercetrin showed decreased serum levels of total cholesterol (-19.9, -27.5, -31.0, and -39.4%), lipoprotein-cholesterol (-36.0, -37.5, -43.3, and -59.4%), and triacylglycerides (-15.6, -23.5, -29.8, and -27.2%) when compared with the control group similar to simvastatin. Moreover, treatment with HE and quercetrin decreased hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity (35.1% on average) and increased fecal cholesterol levels (38.2% on average). DISCUSSION AND CONCLUSIONS: Our results suggest that hypolipidemic effects of HE are associated with it modulating the activity of HMG-CoA reductase and its interference in the reabsorption and/or excretion of intestinal lipids. Solidago chilensis and its main constituent, quercetrin, may thus be effective as cholesterol-lowering agents and in preventing atherosclerosis.


Assuntos
Colesterol na Dieta/efeitos adversos , Hipercolesterolemia/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Quercetina/análogos & derivados , Solidago , Animais , Relação Dose-Resposta a Droga , Hipercolesterolemia/sangue , Hipercolesterolemia/induzido quimicamente , Hipolipemiantes/isolamento & purificação , Masculino , Componentes Aéreos da Planta , Extratos Vegetais/isolamento & purificação , Quercetina/isolamento & purificação , Quercetina/uso terapêutico , Ratos , Ratos Wistar , Resultado do Tratamento
8.
Environ Sci Pollut Res Int ; 30(8): 21144-21155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36264473

RESUMO

Ochratoxin A (OTA) is a mycotoxin produced by species of filamentous fungi widely found as a contaminant in food and with high toxic potential. Studies have shown that this toxin causes kidney and liver damage; however, data on the central nervous system effects of exposure to OTA are still scarce. Thus, this study aimed to investigate the effects of exposure to OTA on behavioral and neurochemical parameters in adult zebrafish. The animals were treated with different doses of OTA (1.38, 2.77, and 5.53 mg/kg) with intraperitoneal injections and submitted to behavioral evaluations in the open tank and social interaction tests. Subsequently, they were euthanized, and the brains were used to assess markers associated with oxidative status. In the open tank test, OTA altered distance traveled, absolute turn angle, mean speed, and freezing time. However, no significant effects were observed in the social interaction test. Moreover, OTA also increased glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR) levels and decreased non-protein thiols (NPSH) levels in the zebrafish brain. This study showed that OTA can affect behavior and neurochemical levels in zebrafish.


Assuntos
Ocratoxinas , Peixe-Zebra , Animais , Ocratoxinas/toxicidade , Oxirredução , Estresse Oxidativo , Locomoção
9.
Lab Anim (NY) ; 52(12): 332-343, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38017181

RESUMO

Environmental enrichment (EE) consists of a series of interventions carried out in the home environment to promote greater exposure to sensory stimuli and mimic the natural habitat of laboratory-housed animals, providing environments closer to those found in nature. Some studies have shown the positive effects of EE in zebrafish housed in a laboratory environment. However, this evidence is still recent and accompanied by contradictory results. Furthermore, there is great variability in the protocols applied and in the conditions of the tests, tanks and materials used to generate an enriched environment. This substantial variability can bring many uncertainties to the development of future studies and hinder the reproducibility and replicability of research. Here, in this context, we carried out a systematic review of the literature, aiming to provide an overview of the EE protocols used in zebrafish research. The literature search was performed in PubMed, Scopus and Web of Science and the studies were selected on the basis of predefined inclusion/exclusion criteria. A total of 901 articles were identified in the databases, and 27 of those studies were included in this review. We conducted data extraction and risk-of-bias analysis in the included studies. Among these studies, the effect of EE was evaluated in two different ways: (1) for animal welfare and (2) as an intervention to prevent behavioral, biochemical, molecular, developmental and breeding dysfunctions. Although the EE protocols in zebrafish presented a series of experimental differences, the results showed that the benefits of the EE for zebrafish were consistent. According to the results described here, the use of EE in the zebrafish home tank improves welfare and may reduce sources of bias in scientific research. However, it is still necessary to develop standardized protocols to improve the application of EE in scientific studies using zebrafish.


Assuntos
Meio Ambiente , Peixe-Zebra , Animais , Reprodutibilidade dos Testes , Animais de Laboratório , Comportamento Animal
10.
Pharmacol Rep ; 75(6): 1544-1555, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37814098

RESUMO

BACKGROUND: Epilepsy is a prevalent neurological disease, affecting approximately 1-2% of the global population. The hallmark of epilepsy is the occurrence of epileptic seizures, which are characterized by predictable behavioral changes reflecting the underlying neural mechanisms of the disease. Unfortunately, around 30% of patients do not respond to current pharmacological treatments. Consequently, exploring alternative therapeutic options for managing this condition is crucial. Two potential candidates for attenuating seizures are N-acetylcysteine (NAC) and Acetyl-L-carnitine (ALC), as they have shown promising neuroprotective effects through the modulation of glutamatergic neurotransmission. METHODS: This study aimed to assess the effects of varying concentrations (0.1, 1.0, and 10 mg/L) of NAC and ALC on acute PTZ-induced seizures in zebrafish in both adult and larval stages. The evaluation of behavioral parameters such as seizure intensity and latency to the crisis can provide insights into the efficacy of these substances. RESULTS: Our results indicate that both drugs at any of the tested concentrations were not able to reduce PTZ-induced epileptic seizures. On the other hand, the administration of diazepam demonstrated a notable reduction in seizure intensity and increased latencies to higher scores of epileptic seizures. CONCLUSION: Consequently, we conclude that, under the conditions employed in this study, NAC and ALC do not exhibit any significant effects on acute seizures in zebrafish.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Humanos , Adulto , Acetilcisteína/uso terapêutico , Acetilcarnitina/efeitos adversos , Larva , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças
11.
Curr Neuropharmacol ; 20(3): 494-509, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33588731

RESUMO

Schizophrenia pathophysiology is associated with hypofunction of glutamate NMDA receptors (NMDAR) in GABAergic interneurons and dopaminergic hyperactivation in subcortical brain areas. The administration of NMDAR antagonists is used as an animal model that replicates behavioral phenotypes relevant to the positive, negative, and cognitive symptoms of schizophrenia. Such models overwhelmingly rely on rodents, which may lead to species-specific biases and poor translatability. Zebrafish, however, is increasingly used as a model organism to study evolutionarily conserved aspects of behavior. We thus aimed to review and integrate the major findings reported in the zebrafish literature regarding the behavioral effects of NMDAR antagonists with relevance to schizophrenia. We identified 44 research articles that met our inclusion criteria from 590 studies retrieved from MEDLINE (PubMed) and Web of Science databases. Dizocilpine (MK-801) and ketamine were employed in 29 and 10 studies, respectively. The use of other NMDAR antagonists, such as phencyclidine (PCP), APV, memantine, and tiletamine, was described in 6 studies. Frequently reported findings are the social interaction and memory deficits induced by MK-801 and circling behavior induced by ketamine. However, mixed results were described for several locomotor and exploratory parameters in the novel tank and open tank tests. The present review integrates the most relevant results while discussing variation in experimental design and methodological procedures. We conclude that zebrafish is a suitable model organism to study drug-induced behavioral phenotypes relevant to schizophrenia. However, more studies are necessary to further characterize the major differences in behavior as compared to mammals.


Assuntos
Antagonistas de Aminoácidos Excitatórios , Esquizofrenia , Animais , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico , Mamíferos , Receptores de N-Metil-D-Aspartato , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Peixe-Zebra
12.
Pharmacol Rep ; 74(4): 736-744, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35852770

RESUMO

BACKGROUND: Curcumin, a polyphenol extracted from the rhizome of Curcuma longa L. (Zingiberaceae), presents neuroprotective properties and can modulate neuronal pathways related to mental disorders. However, curcumin has low bioavailability, which can compromise its use. The micronization process can reduce mean particle diameter and improve this compound's bioavailability and therapeutic potential. METHODS: We compared the behavioral (open tank test, OTT) and neurochemical (thiobarbituric acid reactive substances (TBARS) and non-protein thiols (NPSH) levels) effects of non-micronized curcumin (CUR, 10 mg/kg, ip) and micronized curcumin (MC, 10 mg/kg, ip) in adult zebrafish subjected to a 90-min acute restraint stress (ARS) protocol. RESULTS: ARS increased the time spent in the central area and the number of crossings and decreased the immobility time of the animals in the OTT. These results suggest an increase in locomotor activity and a decrease in thigmotaxis behavior. Both CUR and MC were not able to prevent these effects. Furthermore, ARS also induced oxidative damage by increasing TBARS and decreasing NPSH levels. Both CUR and MC did not prevent these effects. CONCLUSION: ARS-induced behavioral and biochemical effects were not blocked by any curcumin preparation. Therefore, we conclude that curcumin does not have acute anti-stress effects in zebrafish.


Assuntos
Curcumina , Animais , Antioxidantes/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico , Peixe-Zebra
13.
Neurosci Biobehav Rev ; 127: 761-778, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087275

RESUMO

Most preclinical behavioral assays use rodents as model animals, leaving room for species-specific biases that could be avoided by an expanded cross-species approach. In this context, zebrafish emerges as an alternative model organism to study neurobiological mechanisms of anxiety, preference, learning, and memory, as well as other phenotypes with relevance to neuropsychiatric disorders. In recent years, several zebrafish studies using different types of mazes have been published. However, the protocols and apparatuses' shapes and dimensions vary widely in the literature. This variation may puzzle researchers attempting to implement maze behavioral assays and challenges the reproducibility across institutions. This review aims to provide an overview of the behavioral paradigms assessed in different types of mazes in zebrafish reported in the last couple of decades. Also, this review aims to contribute to a better characterization of multi-behavioral assessment in zebrafish.


Assuntos
Natação , Peixe-Zebra , Animais , Comportamento Animal , Aprendizagem em Labirinto , Reprodutibilidade dos Testes
14.
Artigo em Inglês | MEDLINE | ID: mdl-34147534

RESUMO

Stress-related disorders are extremely harmful and cause significant impacts on the individual and society. Despite the limited evidence regarding glucagon-like peptide-1 receptor (GLP-1R) and mental disorders, a few clinical and preclinical studies suggest that modulating this system could improve symptoms of stress-related disorders. This study aimed to investigate the effects of liraglutide, a GLP-1R agonist, on neurobehavioral phenotypes and brain oxidative status in adult zebrafish. Acute liraglutide promoted anxiolytic-like effects in the light/dark test, while chronic treatment blocked the impact of unpredictable chronic stress on behavioral and physiological parameters. Taken together, our study demonstrates that liraglutide is active on the zebrafish brain and may counteract some of the effects induced by stress. More studies are warranted to further elucidate the potential of GLP-1R agonists for the management of brain disorders.


Assuntos
Encéfalo/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Estresse Psicológico/metabolismo , Peixe-Zebra/metabolismo , Animais , Feminino , Humanos , Masculino , Estresse Oxidativo
15.
Front Psychiatry ; 12: 598518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716814

RESUMO

Problem: Chronological aging in later life is associated with brain degeneration processes and increased risk for disease such as stroke and dementia. With a worldwide tendency of aging populations and increased longevity, mental health, and psychiatric research have paid increasing attention to understanding brain-related changes of aging. Recent findings suggest there is a brain age gap (a difference between chronological age and brain age predicted by brain imaging indices); the magnitude of the gap may indicate early onset of brain aging processes and disease. Artificial intelligence has allowed for a narrowing of the gap in chronological and predicted brain age. However, the factors that drive model predictions of brain age are still unknown, and there is not much about these factors that can be gleaned from the black-box nature of machine learning models. The goal of the present study was to test a brain age regression approach that is more amenable to interpretation by researchers and clinicians. Methods: Using convolutional neural networks we trained multiple regressor models to predict brain age based on single slices of magnetic resonance imaging, which included gray matter- or white matter-segmented inputs. We evaluated the trained models in all brain image slices to generate a final prediction of brain age. Unlike whole-brain approaches to classification, the slice-level predictions allows for the identification of which brain slices and associated regions have the largest difference between chronological and neuroimaging-derived brain age. We also evaluated how model predictions were influenced by slice index and plane, participant age and sex, and MRI data collection site. Results: The results show, first, that the specific slice used for prediction affects prediction error (i.e., difference between chronological age and neuroimaging-derived brain age); second, the MRI site-stratified separation of training and test sets removed site effects and also minimized sex effects; third, the choice of MRI slice plane influences the overall error of the model. Conclusion: Compared to whole brain-based predictive models of neuroimaging-derived brain age, slice-based approach improves the interpretability and therefore the reliability of the prediction of brain age using MRI data.

16.
Naunyn Schmiedebergs Arch Pharmacol ; 393(4): 591-601, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31768573

RESUMO

Anxiety disorders are highly prevalent and a leading cause of disability worldwide. Their etiology is related to stress, an adaptive response of the organism to restore homeostasis, in which oxidative stress and glutamatergic hyperactivity are involved. N-Acetylcysteine (NAC) is a multitarget approved drug proved to be beneficial in the treatment of various mental disorders. Nevertheless, NAC has low membrane permeability and poor bioavailability and its limited delivery to the brain may explain inconsistencies in the literature. N-Acetylcysteine amide (AD4) is a synthetic derivative of NAC in which the carboxyl group was modified to an amide. The amidation of AD4 improved lipophilicity and blood-brain barrier permeability and enhanced its antioxidant properties. The purpose of this study was to investigate the effects of AD4 on behavioral and biochemical parameters in zebrafish anxiety models. Neither AD4 nor NAC induced effects on locomotion and anxiety-related parameters in the novel tank test. However, in the light/dark test, AD4 (0.001 mg/L) increased the time spent in the lit side in a concentration 100 times lower than NAC (0.1 mg/L). In the acute restraint stress protocol, NAC and AD4 (0.001 mg/L) showed anxiolytic properties without meaningful effects on oxidative status. The study suggests that AD4 has anxiolytic effects in zebrafish with higher potency than the parent compound. Additional studies are warranted to characterize the anxiolytic profile of AD4 and its potential in the management of anxiety disorders.


Assuntos
Acetilcisteína/análogos & derivados , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Acetilcisteína/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra
17.
Artigo em Inglês | MEDLINE | ID: mdl-30946939

RESUMO

Alcohol abuse is a highly prevalent condition that substantially contributes to global morbidity and mortality. Most available pharmacological treatments offer little efficacy as relapse rates are high, due in part to the symptoms experienced during abstinence. The roles of oxidative stress and glutamatergic transmission in alcohol withdrawal have been demonstrated in several studies, suggesting that restoration of oxidative status and glutamatergic function may represent a new pharmacological target to prevent the behavioral and biochemical alterations observed during withdrawal. A well-known antioxidant and glutamatergic modulator, N-acetylcysteine (NAC), has shown promise in treating a variety of psychiatric conditions, including substance use disorders, and is a promising molecule in the management of alcohol withdrawal syndrome. Thus, the aim of this study was to investigate whether NAC is able to prevent the expression of behavioral and biochemical alterations induced by ethanol withdrawal in chronically exposed zebrafish. Animals were exposed to ethanol (1% v/v, 20 min) or control water, followed by treatment with NAC (1 mg/L, 10 min) or control water daily for 8 days; 24 h later, experimental animals were submitted to the novel tank test (NTT). Ethanol withdrawal decreased the distance traveled and increased the number of immobile episodes, indicating locomotor deficits; moreover, withdrawal decreased the number of entries and time spent in the top area, while increasing time spent in the bottom area, indicating anxiety-like behavior. Alcohol withdrawal also increased lipid peroxidation (TBARS) and decreased non-protein reduced sulfhydryl (NPSH) and superoxide dismutase (SOD) and catalase (CAT) activities. NAC attenuated these locomotor deficits and prevented the manifestation of anxiety-like behavior as well as the oxidative damage observed following ethanol withdrawal. Given its favorable safety profile, additional clinical and preclinical studies are warranted to unravel the long-term effects of NAC in the context of alcohol abuse and the exact mechanisms involved. Nevertheless, our study adds to the existing body of evidence supporting the clinical evaluation of NAC in substance abuse disorders.


Assuntos
Acetilcisteína/uso terapêutico , Etanol/efeitos adversos , Síndrome de Abstinência a Substâncias/prevenção & controle , Animais , Ansiedade/induzido quimicamente , Ansiedade/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Peixe-Zebra
18.
Mol Neurobiol ; 56(2): 1188-1195, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29876880

RESUMO

There is accumulating evidence on the use of N-acetylcysteine (NAC) in the treatment of patients with neuropsychiatric disorders. As a multi-target drug and a glutathione precursor, NAC is a promising molecule in the management of stress-related disorders, for which there is an expanding field of research investigating novel therapies targeting oxidative pathways. The deleterious effects of chronic stress in the central nervous system are a result of glutamatergic hyperactivation, glutathione (GSH) depletion, oxidative stress, and increased inflammatory response, among others. The aim of this study was to investigate the effects of NAC in zebrafish submitted to unpredictable chronic stress (UCS). Animals were initially stressed or not for 7 days, followed by treatment with NAC (1 mg/L, 10 min) or vehicle for 7 days. UCS decreased the number of entries and time spent in the top area in the novel tank test, which indicate increased anxiety levels. It also increased reactive oxygen species (ROS) levels and lipid peroxidation (TBARS) while decreased non-protein thiols (NPSH) and superoxide dismutase (SOD) activity. NAC reversed the anxiety-like behavior and oxidative damage observed in stressed animals. Additional studies are needed to investigate the effects of this agent on glutamatergic modulation and inflammatory markers related to stress. Nevertheless, our study adds to the existing body of evidence supporting the clinical evaluation of NAC in mood disorders, anxiety, post-traumatic stress disorder, and other conditions associated with stress.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Acetilcisteína/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Ansiedade/metabolismo , Encéfalo/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Psicológico/metabolismo , Superóxido Dismutase/metabolismo , Peixe-Zebra
19.
Neuropharmacology ; 150: 145-152, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30917915

RESUMO

Stress-related psychiatric disorders are mental conditions that affect mood, cognition and behavior and arise because of the impact of prolonged stress on the central nervous system (CNS). Acetyl-L-carnitine (ALC) is an acetyl ester of L-carnitine that easily crosses the blood-brain barrier and was recently found to be decreased in patients with major depressive disorder. ALC plays a role in energy metabolism and is widely consumed as a nutritional supplement to improve physical performance. In this study, our objective was to evaluate the effects of ALC treatment (0.1 mg/L, 10 min) for 7 days on behavior and oxidative stress in zebrafish subjected to unpredictable chronic stress (UCS) protocol. Behavioral outcomes were assessed in the novel tank test, and parameters of oxidative status (lipid peroxidation and antioxidant defenses) were evaluated in the brain using colorimetric methods. According to our previous findings, UCS increased anxiety-like behavior and lipid peroxidation, while it decreased non-protein thiol levels and superoxide dismutase activity. However, ALC reversed the anxiety-like behavior and oxidative damage in stressed animals, while it was devoid of effect in control animals. Although our data reinforce the neuroprotective potential of ALC in the treatment of psychiatric disorders related to stress, further investigations are required to clarify its mechanisms of action and confirm its efficacy.


Assuntos
Acetilcarnitina/farmacologia , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Acetilcarnitina/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Encéfalo/metabolismo , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Peixe-Zebra
20.
Environ Sci Pollut Res Int ; 26(27): 27808-27815, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31342352

RESUMO

The use of pesticides has been growing along with the demand for agricultural products. These compounds, however, are not restricted to the field, spreading easily through the soil, contaminating groundwater and reaching urban centers. Propiconazole is a triazole fungicide that has been increasingly used in agriculture. However, there are few data about its effects on non-target organisms. This study aimed to evaluate the effects of propiconazole in zebrafish. The animals were exposed for 96 h to different concentrations of propiconazole (425, 850, 1700, 8500 ng/L), then submitted to the novel tank test for behavioral analyses. The brains were collected for evaluation of oxidative stress parameters. Exposure to propiconazole (1700 and 8500 ng/L) decreased the number of crossings, entries, and time spent in the top, and increased the time spent in the bottom area of the tank. We also observed an increase in the activities of superoxide dismutase and catalase in zebrafish brain exposed to propiconazole at 425, 850, and 1700 ng/L. We conclude that propiconazole alters normal fish behavior and disrupts oxidative status. More studies are necessary to elucidate the exact mechanism underlying the effects of propiconazole on non-target-organisms.


Assuntos
Catalase/química , Fungicidas Industriais/análise , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/química , Triazóis/análise , Agricultura , Animais , Fungicidas Industriais/química , Água Subterrânea , Praguicidas/análise , Praguicidas/química , Solo , Triazóis/química , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA