Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.052
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(7): 1858-1864.e10, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631096

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the coronavirus disease 2019 (COVID-19) pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 431 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 251 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that ∼20% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but they were boosted upon SARS-CoV-2 infection.


Assuntos
Alphacoronavirus/imunologia , Anticorpos Antivirais , Betacoronavirus/imunologia , COVID-19/imunologia , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19 , Criança , Pré-Escolar , Chlorocebus aethiops , Proteção Cruzada , Reações Cruzadas , Suscetibilidade a Doenças , Células HEK293 , Humanos , Lactente , Recém-Nascido , Células Vero
2.
Cell ; 181(3): 665-673.e10, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32289252

RESUMO

A growing number of bacteria are recognized to conduct electrons across their cell envelope, and yet molecular details of the mechanisms supporting this process remain unknown. Here, we report the atomic structure of an outer membrane spanning protein complex, MtrAB, that is representative of a protein family known to transport electrons between the interior and exterior environments of phylogenetically and metabolically diverse microorganisms. The structure is revealed as a naturally insulated biomolecular wire possessing a 10-heme cytochrome, MtrA, insulated from the membrane lipidic environment by embedding within a 26 strand ß-barrel formed by MtrB. MtrAB forms an intimate connection with an extracellular 10-heme cytochrome, MtrC, which presents its hemes across a large surface area for electrical contact with extracellular redox partners, including transition metals and electrodes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , Fatores de Transcrição/ultraestrutura , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Citocromos/metabolismo , Transporte de Elétrons/fisiologia , Elétrons , Heme/metabolismo , Complexos Multiproteicos/ultraestrutura , Oxirredução , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
3.
Immunity ; 57(3): 408-410, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479357

RESUMO

Plasma cells (PCs) rely on external survival cues for persistence, which limits the size of the PC pool. How, then, are new specificities incorporated into a saturated system? In this issue of Immunity, Simons and Karin put forward a mathematical framework to explain PC retention that makes testable predictions about steady-state lifespan structure, withstands tests based on accrual and displaceability, and accounts for lifespan stratification with specificity.


Assuntos
Plasmócitos
4.
Cell ; 169(1): 108-119.e20, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340336

RESUMO

A T cell mounts an immune response by measuring the binding strength of its T cell receptor (TCR) for peptide-loaded MHCs (pMHC) on an antigen-presenting cell. How T cells convert the lifetime of the extracellular TCR-pMHC interaction into an intracellular signal remains unknown. Here, we developed a synthetic signaling system in which the extracellular domains of the TCR and pMHC were replaced with short hybridizing strands of DNA. Remarkably, T cells can discriminate between DNA ligands differing by a single base pair. Single-molecule imaging reveals that signaling is initiated when single ligand-bound receptors are converted into clusters, a time-dependent process requiring ligands with longer bound times. A computation model reveals that receptor clustering serves a kinetic proofreading function, enabling ligands with longer bound times to have disproportionally greater signaling outputs. These results suggest that spatial reorganization of receptors plays an important role in ligand discrimination in T cell signaling.


Assuntos
Ligantes , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , DNA/metabolismo , Humanos , Células Jurkat , Fosforilação , Imagem Individual de Molécula , Proteína-Tirosina Quinase ZAP-70/análise
5.
Immunity ; 55(8): 1414-1430.e5, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35896116

RESUMO

Germinal centers (GCs), transient structures within B cell follicles and central to affinity maturation, require the coordinated behavior of T and B cells. IL-21, a pleiotropic T cell-derived cytokine, is key to GC biology through incompletely understood mechanisms. By genetically restricting production and receipt of IL-21 in vivo, we reveal how its independent actions on T and B cells combine to regulate the GC. IL-21 established the magnitude of the GC B cell response by promoting CD4+ T cell expansion and differentiation in a dose-dependent manner and with paracrine activity. Within GC, IL-21 specifically promoted B cell centroblast identity and, when bioavailability was high, plasma cell differentiation. Critically, these actions may occur irrespective of cognate T-B interactions, making IL-21 a general promoter of growth as distinct to a mediator of affinity-driven selection via synaptic delivery. This promiscuous activity of IL-21 explains the consequences of IL-21 deficiency on antibody-based immunity.


Assuntos
Sinapses Imunológicas , Linfócitos T Auxiliares-Indutores , Diferenciação Celular , Centro Germinativo , Interleucinas
6.
Immunity ; 53(4): 702-704, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053326

RESUMO

The contribution of the immunoglobulin E (IgE)-mast cell response to allergy portrays the axis as a villain with malicious intent. A new study from Starkl et al. tells a different story, highlighting a more worthwhile purpose of protecting us against bacterial toxins.


Assuntos
Hipersensibilidade , Imunoglobulina E , Contagem de Células , Consciência , Humanos , Mastócitos
7.
Nature ; 613(7942): 160-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477540

RESUMO

Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3ß) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3ß is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3ß have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3ß is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3ß associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3ß-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.


Assuntos
Adipócitos , Proteínas de Ligação ao Cálcio , Metabolismo dos Lipídeos , Proteínas de Membrana , Animais , Feminino , Humanos , Camundongos , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Placenta , Triglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Ácidos Graxos/metabolismo , Hipotermia/metabolismo , Termogênese
8.
Nat Immunol ; 17(4): 406-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950237

RESUMO

The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of human patients with sepsis, we found that a shift from oxidative phosphorylation to aerobic glycolysis was an important component of initial activation of host defense. Blocking metabolic pathways with metformin diminished cytokine production and increased mortality in systemic fungal infection in mice. In contrast, in leukocytes rendered tolerant by exposure to lipopolysaccharide or after isolation from patients with sepsis and immunoparalysis, a generalized metabolic defect at the level of both glycolysis and oxidative metabolism was apparent, which was restored after recovery of the patients. Finally, the immunometabolic defects in humans were partially restored by therapy with recombinant interferon-γ, which suggested that metabolic processes might represent a therapeutic target in sepsis.


Assuntos
Citocinas/imunologia , Endotoxemia/imunologia , Metabolismo Energético/imunologia , Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Sepse/imunologia , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/imunologia , Aspergilose/metabolismo , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/imunologia , Candidíase Invasiva/metabolismo , Endotoxemia/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Feminino , Glicólise , Humanos , Immunoblotting , Interferon gama/uso terapêutico , Ácido Láctico/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/metabolismo , NAD/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Estudos Prospectivos , Sepse/tratamento farmacológico , Sepse/metabolismo , Transcriptoma , Adulto Jovem
9.
Trends Genet ; 40(5): 381-382, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503578

RESUMO

Recently, Pham et al. used an array of model systems to uncover a role for the enzyme methionine adenosyltransferase (MAT)-1A, which is mainly expressed in liver, in both sensing formaldehyde and regulating transcriptional responses that protect against it. This provides a new lens for understanding the effects of formaldehyde on gene regulation.


Assuntos
Epigênese Genética , Formaldeído , Metionina Adenosiltransferase , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Humanos , Carbono/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética
10.
Nat Methods ; 21(4): 666-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459384

RESUMO

We developed a system for optogenetic release of single molecules in cells. We confined soluble and transmembrane proteins to the Golgi apparatus via a photocleavable protein and released them by short pulses of light. Our method allows for a light dose-dependent delivery of functional proteins to the cytosol and plasma membrane in amounts compatible with single-molecule imaging, greatly simplifying access to single-molecule microscopy of any protein in live cells. We were able to reconstitute ion conductance by delivering BK and LRRC8/volume-regulated anion channels to the plasma membrane. Finally we were able to induce NF-kB signaling in T lymphoblasts stimulated by interleukin-1 by controlled release of a signaling protein that had been knocked out. We observed light-induced formation of functional inflammatory signaling complexes that triggered phosphorylation of the inhibitor of nuclear factor kappa-B kinase only in activated cells. We thus developed an optogenetic method for the reconstitution and investigation of cellular function at the single-molecule level.


Assuntos
Optogenética , Transdução de Sinais , Preparações de Ação Retardada , NF-kappa B/metabolismo , Fosforilação
11.
Nucleic Acids Res ; 52(8): 4723-4738, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587192

RESUMO

Bacterial reverse transcriptases (RTs) are a large and diverse enzyme family. AbiA, AbiK and Abi-P2 are abortive infection system (Abi) RTs that mediate defense against bacteriophages. What sets Abi RTs apart from other RT enzymes is their ability to synthesize long DNA products of random sequences in a template- and primer-independent manner. Structures of AbiK and Abi-P2 representatives have recently been determined, but there are no structural data available for AbiA. Here, we report the crystal structure of Lactococcus AbiA polymerase in complex with a single-stranded polymerization product. AbiA comprises three domains: an RT-like domain, a helical domain that is typical for Abi polymerases, and a higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain that is common for many antiviral proteins. AbiA forms a dimer that distinguishes it from AbiK and Abi-P2, which form trimers/hexamers. We show the DNA polymerase activity of AbiA in an in vitro assay and demonstrate that it requires the presence of the HEPN domain which is enzymatically inactive. We validate our biochemical and structural results in vivo through bacteriophage infection assays. Finally, our in vivo results suggest that AbiA-mediated phage defense may not rely on AbiA-mediated cell death.


Assuntos
Bacteriófagos , Lactococcus , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriófagos/genética , Cristalografia por Raios X , Lactococcus/virologia , Lactococcus/genética , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , DNA Polimerase Dirigida por RNA/metabolismo , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 120(35): e2216521120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603748

RESUMO

The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here, we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2, or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 and BA.1 strains of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality but also for binding and neutralization of antigenically drifted viruses.


Assuntos
Anticorpos Antivirais , COVID-19 , Imunoglobulina G , Influenza Humana , Imunoglobulina G/imunologia , Anticorpos Antivirais/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Formação de Anticorpos , Influenza Humana/imunologia , Influenza Humana/virologia , COVID-19/imunologia , COVID-19/virologia , Switching de Imunoglobulina , SARS-CoV-2/fisiologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/fisiologia
13.
Proc Natl Acad Sci U S A ; 120(33): e2305393120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37556498

RESUMO

Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.


Assuntos
Antitoxinas , Toxinas Bacterianas , Antitoxinas/genética , Toxinas Bacterianas/metabolismo , Células Procarióticas/metabolismo , Óperon/genética , Biologia Computacional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
14.
EMBO Rep ; 24(10): e57233, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37602973

RESUMO

IL-1 receptor (IL-1R) signaling can activate thresholded invariant outputs and proportional outputs that scale with the amount of stimulation. Both responses require the Myddosome, a multiprotein complex. The Myddosome is required for polyubiquitin chain formation and NF-kB signaling. However, how these signals are spatially and temporally regulated to drive switch-like and proportional outcomes is not understood. During IL-1R signaling, Myddosomes dynamically reorganize into multi-Myddosome clusters at the cell membrane. Blockade of clustering using nanoscale extracellular barriers reduces NF-kB activation. Myddosomes function as scaffolds that assemble an NF-kB signalosome consisting of E3-ubiquitin ligases TRAF6 and LUBAC, K63/M1-linked polyubiquitin chains, phospho-IKK, and phospho-p65. This signalosome preferentially assembles at regions of high Myddosome density, which enhances the recruitment of TRAF6 and LUBAC. Extracellular barriers that restrict Myddosome clustering perturbed the recruitment of both ligases. We find that LUBAC was especially sensitive to clustering with 10-fold lower recruitment to single Myddosomes than clustered Myddosomes. These data reveal that the clustering behavior of Myddosomes provides a basis for digital and analog IL-1R signaling.


Assuntos
NF-kappa B , Receptores de Interleucina-1 , NF-kappa B/metabolismo , Receptores de Interleucina-1/metabolismo , Poliubiquitina/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
Am J Respir Crit Care Med ; 209(7): 829-839, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099833

RESUMO

Rationale: Pneumonia is a frequent and feared complication in intubated critically ill patients. Tissue concentrations of antimicrobial drugs need to be sufficiently high to treat the infection and also prevent development of bacterial resistance. It is uncertain whether pulmonary inflammation and injury affect antimicrobial drug penetration into lung tissue.Objectives: To determine and compare tissue and BAL fluid concentrations of ceftaroline fosamil and linezolid in a model of unilateral acute lung injury in pigs and to evaluate whether dose adjustment is necessary to reach sufficient antimicrobial concentrations in injured lung tissue.Methods: After induction of unilateral acute lung injury, ceftaroline fosamil and linezolid were administered intravenously. Drug concentrations were measured in lung tissue through microdialysis and in blood and BAL fluid samples during the following 8 hours. The primary endpoint was the tissue concentration area under the concentration curve in the first 8 hours (AUC0-8 h) of the two antimicrobial drugs.Measurements and Main Results: In 10 pigs, antimicrobial drug concentrations were higher in inflamed and injured lung tissue compared with those in uninflamed and uninjured lung tissue (median ceftaroline fosamil AUC0-8 h [and interquartile range] = 26.7 mg ⋅ h ⋅ L-1 [19.7-39.0] vs. 16.0 mg ⋅ h ⋅ L-1 [13.6-19.9], P = 0.02; median linezolid AUC0-8 h 76.0 mg ⋅ h ⋅ L-1 [68.1-96.0] vs. 54.6 mg ⋅ h ⋅ L-1 [42.7-60.9], P = 0.01), resulting in a longer time above the minimal inhibitory concentration and in higher peak concentrations and dialysate/plasma ratios. Penetration into BAL fluid was excellent for both antimicrobials, but without left-to-right differences (ceftaroline fosamil, P = 0.78; linezolid, P = 1.00).Conclusions: Tissue penetration of two commonly used antimicrobial drugs for pneumonia is enhanced by early lung tissue inflammation and injury, resulting in longer times above the minimal inhibitory concentration. Thus, lung tissue inflammation ameliorates antimicrobial drug penetration during the acute phase.


Assuntos
Lesão Pulmonar Aguda , Anti-Infecciosos , Pneumonia , Humanos , Animais , Suínos , Linezolida/uso terapêutico , Antibacterianos/efeitos adversos , Anti-Infecciosos/uso terapêutico , Ceftarolina , Pneumonia/tratamento farmacológico , Pneumonia/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Pulmão , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente
16.
Am J Respir Crit Care Med ; 209(8): 973-986, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38240721

RESUMO

Rationale: The plasma lipidome has the potential to reflect many facets of the host status during severe infection. Previous work is limited to specific lipid groups or was focused on lipids as prognosticators.Objectives: To map the plasma lipidome during sepsis due to community-acquired pneumonia (CAP) and determine the disease specificity and associations with clinical features.Methods: We analyzed 1,833 lipid species across 33 classes in 169 patients admitted to the ICU with sepsis due to CAP, 51 noninfected ICU patients, and 48 outpatient controls. In a paired analysis, we reanalyzed patients still in the ICU 4 days after admission (n = 82).Measurements and Main Results: A total of 58% of plasma lipids were significantly lower in patients with CAP-attributable sepsis compared with outpatient controls (6% higher, 36% not different). We found strong lipid class-specific associations with disease severity, validated across two external cohorts, and inflammatory biomarkers, in which triacylglycerols, cholesterol esters, and lysophospholipids exhibited the strongest associations. A total of 36% of lipids increased over time, and stratification by survival revealed diverging lipid recovery, which was confirmed in an external cohort; specifically, a 10% increase in cholesterol ester levels was related to a lower odds ratio (0.84; P = 0.006) for 30-day mortality (absolute mortality, 18 of 82). Comparison with noninfected ICU patients delineated a substantial common illness response (57.5%) and a distinct lipidomic signal for patients with CAP-attributable sepsis (37%).Conclusions: Patients with sepsis due to CAP exhibit a time-dependent and partially disease-specific shift in their plasma lipidome that correlates with disease severity and systemic inflammation and is associated with higher mortality.


Assuntos
Infecções Comunitárias Adquiridas , Pneumonia , Sepse , Humanos , Lipidômica , Pneumonia/complicações , Sepse/complicações , Lipídeos , Índice de Gravidade de Doença , Unidades de Terapia Intensiva
17.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082156

RESUMO

Enzyme-assisted posttranslational modifications (PTMs) constitute a major means of signaling across different cellular compartments. However, how nonenzymatic PTMs-despite their direct relevance to covalent drug development-impinge on cross-compartment signaling remains inaccessible as current target-identification (target-ID) technologies offer limited spatiotemporal resolution, and proximity mapping tools are also not guided by specific, biologically-relevant, ligand chemotypes. Here we establish a quantitative and direct profiling platform (Localis-rex) that ranks responsivity of compartmentalized subproteomes to nonenzymatic PTMs. In a setup that contrasts nucleus- vs. cytoplasm-specific responsivity to reactive-metabolite modification (hydroxynonenylation), ∼40% of the top-enriched protein sensors investigated respond in compartments of nonprimary origin or where the canonical activity of the protein sensor is inoperative. CDK9-a primarily nuclear-localized kinase-was hydroxynonenylated only in the cytoplasm. Site-specific CDK9 hydroxynonenylation-which we identified in untreated cells-drives its nuclear translocation, downregulating RNA-polymerase-II activity, through a mechanism distinct from that of commonly used CDK9 inhibitors. Taken together, this work documents an unmet approach to quantitatively profile and decode localized and context-specific signaling/signal-propagation programs orchestrated by reactive covalent ligands.


Assuntos
Proteínas/genética , Proteínas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Células RAW 264.7 , Transdução de Sinais/fisiologia , Transcrição Gênica/genética
18.
Proc Natl Acad Sci U S A ; 119(28): e2113465119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867735

RESUMO

The role of autophagy in cancer is complex. Both tumor-promoting and tumor-suppressive effects are reported, with tumor type, stage and specific genetic lesions dictating the role. This calls for analysis in models that best recapitulate each tumor type, from initiation to metastatic disease, to specifically understand the contribution of autophagy in each context. Here, we report the effects of deleting the essential autophagy gene Atg7 in a model of pancreatic ductal adenocarcinoma (PDAC), in which mutant KrasG12D and mutant Trp53172H are induced in adult tissue leading to metastatic PDAC. This revealed that Atg7 loss in the presence of KrasG12D/+ and Trp53172H/+ was tumor promoting, similar to previous observations in tumors driven by embryonic KrasG12D/+ and deletion of Trp53. However, Atg7 hemizygosity also enhanced tumor initiation and progression, even though this did not ablate autophagy. Moreover, despite this enhanced progression, fewer Atg7 hemizygous mice had metastases compared with animals wild type for this allele, indicating that ATG7 is a promoter of metastasis. We show, in addition, that Atg7+/- tumors have comparatively lower levels of succinate, and that cells derived from Atg7+/- tumors are also less invasive than those from Atg7+/+ tumors. This effect on invasion can be rescued by ectopic expression of Atg7 in Atg7+/- cells, without affecting the autophagic capacity of the cells, or by treatment with a cell-permeable analog of succinate. These findings therefore show that ATG7 has roles in invasion and metastasis that are not related to the role of the protein in the regulation of autophagy.


Assuntos
Proteína 7 Relacionada à Autofagia , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundário , Linhagem Celular Tumoral , Camundongos , Mutação , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Succinatos/metabolismo , Succinatos/farmacologia
19.
Immunol Rev ; 304(1): 111-125, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34523719

RESUMO

B lymphocytes play a central role in host immune defense. B cell receptor (BCR) signaling regulates survival, proliferation, and differentiation of B lymphocytes. Signaling through the BCR signalosome is a multi-component cascade that is tightly regulated and is important in the coordination of B cell differentiation and function. At different stages of development, B cells that have BCRs recognizing self are eliminated to prevent autoimmunity. microRNAs (miRNAs) are small single-stranded non-coding RNAs that contribute to post-transcriptional regulation of gene expression and have been shown to orchestrate cell fate decisions through the regulation of lineage-specific transcriptional profiles. Studies have identified miRNAs to be crucial for B cell development in the bone marrow and their subsequent population of the peripheral immune system. In this review, we focus on the role of miRNAs in the regulation of BCR signaling as it pertains to B lymphocyte development and function. In particular, we discuss the most recent studies describing the role of miRNAs in the regulation of both early B cell development and peripheral B cell responses and examine the ways by which miRNAs regulate signal downstream of B cell antigen receptor to prevent aberrant activation and autoimmunity.


Assuntos
MicroRNAs , Linfócitos B , Diferenciação Celular , MicroRNAs/genética , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais
20.
Clin Infect Dis ; 78(6): 1473-1481, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38297916

RESUMO

BACKGROUND: Novel treatments are needed for Staphylococcus aureus bacteremia, particularly for methicillin-resistant S. aureus (MRSA). Exebacase is a first-in-class antistaphylococcal lysin that is rapidly bactericidal and synergizes with antibiotics. METHODS: In Direct Lysis of Staph Aureus Resistant Pathogen Trial of Exebacase (DISRUPT), a superiority-design phase 3 study, patients with S. aureus bacteremia/endocarditis were randomly assigned to receive a single dose of intravenous exebacase or placebo in addition to standard-of-care antibiotics. The primary efficacy outcome was clinical response at day 14 in the MRSA population. RESULTS: A total of 259 patients were randomized before the study was stopped for futility based on the recommendation of the unblinded Data Safety Monitoring Board. Clinical response rates at day 14 in the MRSA population (n = 97) were 50.0% (exebacase + antibiotics; 32/64) versus 60.6% (antibiotics alone; 20/33) (P = .392). Overall, rates of adverse events were similar across groups. No adverse events of hypersensitivity related to exebacase were reported. CONCLUSIONS: Exebacase + antibiotics failed to improve clinical response at day 14 in patients with MRSA bacteremia/endocarditis. This result was unexpected based on phase 2 data that established proof-of-concept for exebacase + antibiotics in patients with MRSA bacteremia/endocarditis. In the antibiotics-alone group, the clinical response rate was higher than that seen in phase 2. Heterogeneity within the study population and a relatively small sample size in either the phase 2 or phase 3 studies may have increased the probability of imbalances in the multiple components of day 14 clinical outcome. This study provides lessons for future superiority studies in S. aureus bacteremia/endocarditis. Clinical Trials Registration.NCT04160468.


Assuntos
Antibacterianos , Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Masculino , Feminino , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Pessoa de Meia-Idade , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Idoso , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Adulto , Endocardite Bacteriana/tratamento farmacológico , Endocardite Bacteriana/microbiologia , Resultado do Tratamento , Padrão de Cuidado , Quimioterapia Combinada , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA