Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Renal Physiol ; 326(4): F669-F679, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38450433

RESUMO

Resuscitative endovascular balloon occlusion of the aorta (REBOA) is used to control noncompressible hemorrhage not addressed with traditional tourniquets. However, REBOA is associated with acute kidney injury (AKI) and subsequent mortality in severely injured trauma patients. Here, we investigated how the degree of aortic occlusion altered the extent of AKI in a porcine model. Female Yorkshire-cross swine (n = 16, 68.1 ± 0.7 kg) were anesthetized and had carotid and bilateral femoral arteries accessed for REBOA insertion and distal and proximal blood pressure monitoring. Through a laparotomy, a 6-cm liver laceration was performed and balloon inflation was performed in zone 1 of the aorta for 90 min, during which animals were randomized to target distal mean arterial pressures of 25 or 45 mmHg via balloon volume adjustment. Blood draws were taken at baseline, end of occlusion, and time of death, at which point renal tissues were harvested 6 h after balloon deflation for histological and molecular analyses. Renal blood flow was lower in the 25-mmHg group (48.5 ± 18.3 mL/min) than in the 45-mmHg group (177.9 ± 27.2 mL/min) during the occlusion phase, which recovered and was not different after balloon deflation. AKI was more severe in the 25-mmHg group, as evidenced by circulating creatinine, blood urea nitrogen, and urinary neutrophil gelatinase-associated lipocalin. The 25-mmHg group had increased tubular necrosis, lower renal citrate synthase activity, increased tissue and circulating syndecan-1, and elevated systemic inflammatory cytokines. The extent of renal ischemia-induced AKI is associated with the magnitude of mitochondrial biomass and systemic inflammation, highlighting potential mechanistic targets to combine with partial REBOA strategies to prevent AKI.NEW & NOTEWORTHY Large animal models of ischemia-reperfusion acute kidney injury (IR-AKI) are lacking. This report establishes a titratable IR-AKI model in swine in which a balloon catheter can be used to alter distal pressures experienced by the kidney, thus controlling renal blood flow. Lower blood flow results in greater renal dysfunction and structural damage, as well as lower mitochondrial biomass, elevated systemic inflammation, and vascular dysfunction.


Assuntos
Injúria Renal Aguda , Oclusão com Balão , Traumatismo por Reperfusão , Choque Hemorrágico , Humanos , Suínos , Feminino , Animais , Modelos Animais de Doenças , Hemorragia/prevenção & controle , Injúria Renal Aguda/etiologia , Isquemia , Inflamação , Oclusão com Balão/métodos , Choque Hemorrágico/terapia
2.
Ann Surg ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39176564

RESUMO

OBJECTIVE: We investigated the potential of acute canagliflozin administration to mitigate acute kidney injury (AKI) and attenuate deleterious pro-inflammatory cytokine release in a clinically relevant swine model of severe renal ischemia reperfusion injury (IRI) induced by hemorrhage and aortic occlusion. BACKGROUND: Long-term canagliflozin use attenuates renal function decline and reduces AKI in diabetes mellitus and heart failure patients. Whilst several reports indicate prophylactic SGLT2 inhibition prevents AKI in IRI, the efficacy of acute administration on IRI and inflammation is not known. METHODS: Female swine (n=16) underwent controlled hemorrhage of 25% blood volume, followed by 90 min of aortic occlusion at the level of the renal ostia (via Resuscitative Endovascular Balloon Occlusion of the Aorta). A single 300 mg dose of oral canagliflozin or vehicle (saline) was delivered 5 mins into aortic occlusion. Hemodynamic monitoring, markers of renal function (serum creatinine, blood urea nitrogen, proteinuria and urinary neutrophil gelatinase-associated lipocalin) and serum cytokine concentrations (including interleukins: IL-1RA, IL-6, IL-8, IL-10, IL-18; and Tumor necrosis factor alpha) were analyzed after IRI, and during a 6h critical care phase. RESULTS: Compared to controls, animals receiving canagliflozin had less severe AKI, improved creatinine clearance, reduced proteinuria, and significantly lower tubular damage as evidenced by histopathology and urinary NGAL. Furthermore, the pro-inflammatory cytokine IL-6 was markedly attenuated without reduction in anti-inflammatory cytokines (IL-1RA and IL-10). CONCLUSIONS: A single dose of canagliflozin administered shortly into ischemic insult mitigates AKI and attenuates harmful pro-inflammatory cytokine release following trauma or surgery. These findings suggest a potential novel therapeutic role for canagliflozin in mitigating the effects of renal IRI worthy of further investigation.

3.
J Surg Res ; 256: 171-179, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32707400

RESUMO

BACKGROUND: Resuscitative endovascular balloon occlusion of the aorta (REBOA) reduces blood loss and improves hemodynamics. Complete occlusion results in distal ischemia, limiting its use for prolonged care. This study evaluated two next-generation partial REBOA (pREBOA) catheters and their ability to achieve targeted distal aortic flow. MATERIALS AND METHODS: Swine underwent hemorrhagic shock, complete aortic occlusion, controlled continuous balloon deflation, and targeted distal perfusion (TDP; 300-mL/min) phases. They were randomized into three groups (n = 6/group), one managed with the current ER-REBOA (ER), and two with the new pREBOA technologies: a bilobed (BL) device and a semicompliant pREBOA-PRO (PRP). Hemodynamics including flow rates and mean arterial pressures at the carotid artery and infrarenal aorta were recorded. RESULTS: Hemodynamics were comparable between groups during hemorrhage and complete occlusion phases. During the controlled continuous balloon deflation phase, the distal aortic flow rate strongly correlated with percent balloon volume in BL and PRP groups, suggesting a precise control of distal perfusion. The slope of flow-balloon-volume curves was greater in the ER group than BL and PRP groups, indicating the change in distal aortic flow rate was more sensitive to the balloon volume (less titratable) when using ER. During the TDP phase, variation in distal aortic flow and mean arterial pressure with respect to the target flow was lower in ER and PRP groups, than the BL group. CONCLUSIONS: Pressure-regulated occlusion using the next-generation pREBOA catheters is more controlled than the first-generation ER-REBOA catheter and allow for targeted and precise distal perfusion.


Assuntos
Oclusão com Balão/métodos , Catéteres , Pressão , Ressuscitação/métodos , Choque Hemorrágico/terapia , Animais , Aorta Abdominal/fisiopatologia , Pressão Arterial/fisiologia , Oclusão com Balão/efeitos adversos , Oclusão com Balão/instrumentação , Artérias Carótidas/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Fluxo Sanguíneo Regional/fisiologia , Ressuscitação/efeitos adversos , Ressuscitação/instrumentação , Choque Hemorrágico/fisiopatologia , Sus scrofa
4.
Sleep Breath ; 24(4): 1645-1652, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32761535

RESUMO

PURPOSE: The Coronavirus Disease 2019 (COVID-19) pandemic may cause an acute shortage of ventilators. Standard noninvasive bilevel positive airway pressure devices with spontaneous and timed respirations (bilevel PAP ST) could provide invasive ventilation but evidence on their effectiveness in this capacity is limited. We sought to evaluate the ability of bilevel PAP ST to effect gas exchange via invasive ventilation in a healthy swine model. METHODS: Two single limb respiratory circuits with passive filtered exhalation were constructed and evaluated. Next, two bilevel PAP ST devices, designed for sleep laboratory and home use, were tested on an intubated healthy swine model using these circuits. These devices were compared to an anesthesia ventilator. RESULTS: We evaluated respiratory mechanics, minute ventilation, oxygenation, and presence of rebreathing for all of these devices. Both bilevel PAP ST devices were able to control the measured parameters. There were noted differences in performance between the two devices. Despite these differences, both devices provided effective invasive ventilation by controlling minute ventilation and providing adequate oxygenation in the animal model. CONCLUSIONS: Commercially available bilevel PAP ST can provide invasive ventilation with a single limb respiratory circuit and in-line filters to control oxygenation and ventilation without significant rebreathing in a swine model. Further study is needed to evaluate safety and efficacy in clinical disease models. In the setting of a ventilator shortage during the COVID-19 pandemic, and in other resource-constrained situations, these devices may be considered as an effective alternative means for invasive ventilation.


Assuntos
COVID-19/terapia , Modelos Animais , Respiração com Pressão Positiva/instrumentação , Respiração Artificial/instrumentação , Animais , Testes de Função Respiratória , Suínos
5.
Mil Med ; 189(3-4): e612-e619, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37632757

RESUMO

INTRODUCTION: Shock states that occur during, for example, profound hemorrhage can cause global tissue hypoperfusion leading to organ failure. There is an unmet need for a reliable marker of tissue perfusion during hemorrhage that can be followed longitudinally. Herein, we investigated whether longitudinal POMCO2 tracks changes in hemodynamics in a swine model of coagulopathic uncontrolled junctional hemorrhage. MATERIALS AND METHODS: Female Yorkshire-crossbreed swine (n = 7, 68.1 ± 0.7 kg) were anesthetized and instrumented for continuous measurement of mean arterial pressure (MAP). Coagulopathy was induced by the exchange of 50 to 60% of blood volume with 6% Hetastarch over 30 minutes to target a hematocrit of <15%. A 4.5-mm arteriotomy was made in the right common femoral artery with 30 seconds of free bleeding. POMCO2 was continuously measured from baseline through hemodilution, hemorrhage, and a subsequent 3-h intensive care unit period. Rotational thromboelastometry and blood gases were measured. RESULTS: POMCO2 and MAP showed no significant changes during the hemodilution phase of the experiment, which produced coagulopathy evidenced by prolonged clot formation times. However, POMCO2 increased because of the uncontrolled hemorrhage by 11.3 ± 3.1 mmHg and was inversely correlated with the drop (17.9 ± 5.9 mmHg) in MAP (Y = -0.4122*X + 2.649, P = .02, r2 = 0.686). In contrast, lactate did not significantly correlate with the changes in MAP (P = .35) or POMCO2 (P = .37). CONCLUSIONS: Despite the logical appeal of measuring noninvasive tissue CO2 measurement as a surrogate for gastrointestinal perfusion, prior studies have only reported snapshots of this readout. The present investigation shows real-time longitudinal measurement of POMCO2 to confirm that MAP inversely correlates to POMCO2 in the face of coagulopathy. The simplicity of measuring POMCO2 in real time can provide an additional practical option for military or civilian medics to monitor trends in hypoperfusion during hemorrhagic shock.


Assuntos
Transtornos da Coagulação Sanguínea , Choque Hemorrágico , Suínos , Feminino , Animais , Pressão Sanguínea/fisiologia , Dióxido de Carbono , Hemorragia , Hemodinâmica/fisiologia , Transtornos da Coagulação Sanguínea/etiologia , Ácido Láctico , Modelos Animais de Doenças
6.
PLoS One ; 18(3): e0281548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930612

RESUMO

BACKGROUND: Systemic inflammatory response remains a poorly understood cause of morbidity and mortality after traumatic injury. Recent nonhuman primate (NHP) trauma models have been used to characterize the systemic response to trauma, but none have incorporated a critical care phase without the use of general anesthesia. We describe the development of a prolonged critical care environment with sedation and ventilation support, and also report corresponding NHP biologic and inflammatory markers. METHODS: Eight adult male rhesus macaques underwent ventilation with sedation for 48-96 hours in a critical care setting. Three of these NHPs underwent "sham" procedures as part of trauma control model development. Blood counts, chemistries, coagulation studies, and cytokines/chemokines were collected throughout the study, and histopathologic analysis was conducted at necropsy. RESULTS: Eight NHPs were intentionally survived and extubated. Three NHPs were euthanized at 72-96 hours without extubation. Transaminitis occurred over the duration of ventilation, but renal function, acid-base status, and hematologic profile remained stable. Chemokine and cytokine analysis were notable for baseline fold-change for Il-6 and Il-1ra (9.7 and 42.7, respectively) that subsequently downtrended throughout the experiment unless clinical respiratory compromise was observed. CONCLUSIONS: A NHP critical care environment with ventilation support is feasible but requires robust resources. The inflammatory profile of NHPs is not profoundly altered by sedation and mechanical ventilation. NHPs are susceptible to the pulmonary effects of short-term ventilation and demonstrate a similar bioprofile response to ventilator-induced pulmonary pathology. This work has implications for further development of a prolonged care NHP model.


Assuntos
Cuidados Críticos , Respiração Artificial , Medicina Veterinária , Animais , Masculino , Quimiocinas , Cuidados Críticos/métodos , Citocinas , Macaca mulatta , Respiração Artificial/efeitos adversos
7.
J Trauma Acute Care Surg ; 95(2S Suppl 1): S144-S151, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259206

RESUMO

BACKGROUND: Hemostatic dressings are used extensively in both military and civilian trauma to control lethal noncompressible hemorrhage. The ideal topical hemostatic agent would provide reliable hemostasis in patients with profound acidosis, coagulopathy, and shock. This study aimed to compare next-generation hemostatic agents against the current military standard in a translational swine model of vascular injury and coagulopathy. METHODS: Female Yorkshire swine were randomized to eight groups (total n = 63; control n = 14, per group n = 7) of hemostatic agents and included: QuikClot Combat Gauze (Teleflex, Morrisville, NC), which served as the control; BloodSTOP IX (LifeScience Plus, Mountain View, CA); Celox Rapid (Medtrade Product, Crewe, United Kingdom); ChitoSAM 100 (Sam Medical, Tualatin, OR); EVARREST Fibrin Sealant Patch (Ethicon, Raritan, NJ); TAC Wrapping Gauze (H&H Medical, Williamsburg, VA); ChitoGauze XR Pro (Tricol Biomedical, Portland, OR); and X-Stat 30 (RevMedX, Wilsonville, OR). Hemodilution via exchange transfusion of 6% hetastarch was performed to induce acidosis and coagulopathy. An arteriotomy was created, allowing 30 seconds of free bleeding followed by application of the hemostatic agent and compression via an external compression device. A total of three applications were allowed for continued/recurrent bleeding. All blood loss was collected, and hemostatic agents were weighed to calculate blood volume loss. Following a 180-minute observation period, angiography was completed to evaluate for technical complication and distal perfusion of the limb. Finally, the limb was ranged five times to assess for rebleeding and clot stability. RESULTS: All swine were confirmed coagulopathic with rotational thromboelastography and acidotic (pH 7.2 ± 0.02). BloodSTOP IX allowed a significant increase in blood loss and number of applications required to obtain hemostasis compared with all other groups. BloodSTOP IX demonstrated a decreased survival rate (29%, p = 0.02). All mortalities were directly attributed to exsanguination as a result of device failure. In surviving animals, there was no difference in extravasation. BloodSTOP IX had an increased rebleeding rate after ranging compared with QuikClot Combat Gauze ( p = 0.007). CONCLUSION: Most novel hemostatic agents demonstrated comparable efficacy compared with the currently military standard hemostatic dressing, CG.


Assuntos
Acidose , Transtornos da Coagulação Sanguínea , Hemostáticos , Animais , Feminino , Bandagens , Transtornos da Coagulação Sanguínea/terapia , Transtornos da Coagulação Sanguínea/complicações , Modelos Animais de Doenças , Adesivo Tecidual de Fibrina/uso terapêutico , Hemorragia/terapia , Hemorragia/etiologia , Técnicas Hemostáticas , Hemostáticos/uso terapêutico , Suínos
8.
J Orthop Surg Res ; 17(1): 422, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123728

RESUMO

BACKGROUND: Traumatic heterotopic ossification (tHO) is characterized by ectopic bone formation in extra-skeletal sites leading to impaired wound healing, entrapment of neurovascular structures, pain, and reduced range of motion. HO has become a signature pathology affecting wounded military personnel who have sustained blast-associated traumatic amputations during the recent conflicts in Iraq and Afghanistan and can compound recovery by causing difficulty with prosthesis limb wearing. Tourniquet use to control catastrophic limb hemorrhage prior to surgery has become almost ubiquitous during this time, with the recognition the prolonged use may risk an ischemia reperfusion injury and associated complications. While many factors influence the formation of tHO, the extended use of tourniquets to limit catastrophic hemorrhage during prolonged field care has not been explored. METHODS: Utilizing an established pre-clinical model of blast-associated complex lower limb injury and traumatic amputation, we evaluated the effects of tourniquet use on tHO formation. Adult male rats were subjected to blast overpressure exposure, femur fracture, and soft tissue crush injury. Pneumatic tourniquet (250-300 mmHg) applied proximal to the injured limb for 150-min was compared to a control group without tourniquet, before a trans-femoral amputation was performed. Outcome measures were volume to tHO formation at 12 weeks and changes in proteomic and genomic markers of early tHO formation between groups. RESULTS: At 12 weeks, volumetric analysis with microCT imaging revealed a 70% increase in total bone formation (p = 0.007) near the site of injury compared to rats with no tourniquet time in the setting of blast-injuries. Rats subjected to tourniquet usage had increased expression of danger-associated molecular patterns (DAMPs) and end organ damage as early as 6 h and as late as 7 days post injury. The expressions of pro-inflammatory cytokines and chemokines and osteochondrogenic genes using quantitative RT-PCR similarly revealed increased expression as early as 6 h post injury, and these genes along with hypoxia associated genes remained elevated for 7 days compared to no tourniquet use. CONCLUSION: These findings suggest that tourniquet induced ischemia leads to significant increases in key transcription factors associated with early endochondral bone formation, systemic inflammatory and hypoxia, resulting in increased HO formation.


Assuntos
Amputação Traumática , Traumatismos da Perna , Ossificação Heterotópica , Animais , Citocinas , Glicolatos , Hipóxia , Extremidade Inferior , Masculino , Insuficiência de Múltiplos Órgãos/complicações , Ossificação Heterotópica/etiologia , Proteômica , Ratos , Fatores de Transcrição
9.
J Trauma Acute Care Surg ; 92(4): 735-742, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35320156

RESUMO

BACKGROUND: Targeted regional optimization (TRO), a partial resuscitative endovascular balloon occlusion of the aorta strategy, may mitigate distal ischemia and extend the window of effectiveness for this adjunct. An automated device may allow greater control and precise regulation of flow past the balloon, while being less resource-intensive. The objective of this study was to assess the technical feasibility of the novel advanced partial occlusion controller (APOC) in achieving TRO at multiple distal pressures. METHODS: Female swine (n = 48, 68.1 ± 0.7 kg) were randomized to a target distal mean arterial pressure (MAP) of 25 mm Hg, 35 mm Hg, or 45 mm Hg by either manual (MAN) or APOC regulation (n = 8 per group). Uncontrolled hemorrhage was generated by liver laceration. Targeted regional optimization was performed for 85 minutes, followed by surgical control and a 6-hour critical care phase. Proximal and distal MAP and flow rates were measured continuously. RESULTS: At a target distal MAP of 25 mm Hg, there was no difference in the MAP attained (APOC: 26.2 ± 1.05 vs. MAN: 26.1 ± 1.78 mm Hg) but the APOC had significantly less deviance (10.9%) than manual titration (14.9%, p < 0.0001). Similarly, at a target distal MAP of 45 mm Hg, there was no difference in mean pressure (44.0 ± 0.900 mm Hg vs. 45.2 ± 1.31 mm Hg) but APOC had less deviance (9.34% vs. 11.9%, p < 0.0001). There was no difference between APOC and MAN in mean (34.6 mm Hg vs. 33.7 mm Hg) or deviance (9.95% vs. 10.4%) at a target distal MAP of 35 mm Hg, respectively. The APOC made on average 77 balloon volume adjustments per experiment compared with 29 by manual titrations. CONCLUSION: The novel APOC consistently achieved and sustained precisely regulated TRO across all groups and demonstrated reduced deviance at the 25 mm Hg and 45 mm Hg groups compared with manual titration.


Assuntos
Oclusão com Balão , Procedimentos Endovasculares , Choque Hemorrágico , Animais , Feminino , Apolipoproteínas C , Modelos Animais de Doenças , Choque Hemorrágico/terapia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA