Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203184

RESUMO

Endometriosis (EM) is a prevalent gynecological disease characterized by the abnormal growth of tissue similar to the endometrium outside of the uterus. This condition is accompanied by the development of new blood vessels in endometriotic lesions. While surgical intervention is effective in removing endometriotic lesions, some patients require multiple surgeries. Therefore, finding non-surgical treatments for EM is of great interest. One of the promising approaches is anti-angiogenic therapy using siRNA-therapeutics to target the expression of the VEGFA gene. Peptide-based polymers have shown promise as siRNA delivery systems due to their biocompatibility and ease of modification. We conducted a study to evaluate the effectiveness of the R6p-cRGD peptide carrier as a non-viral vehicle for delivering siRNA to endothelial cells in vitro and endometrial implants in vivo. We investigated the physicochemical properties of the siRNA-complexes, assessed cellular toxicity, and examined the efficiency of GFP and VEGFA genes silencing. Furthermore, we tested the anti-angiogenic effects of these complexes in cellular and animal models. The transfection with siRNA complexes led to a significant increase in VEGFA gene knockdown efficiency and a decrease in the migration of endothelial cells. For the animal model, we induced endometriosis in rats by transplanting endometrial tissue subcutaneously. We evaluated the efficiency of anti-angiogenic therapy for EM in vivo using anti-VEGF siRNA/R6p-RGD complexes. During this assessment, we measured the volume of the implants, analyzed VEGFA gene expression, and conducted CD34 immunohistochemical staining. The results showed a significant decrease in the growth of endometriotic implants and in VEGFA gene expression. Overall, our findings demonstrate the potential of the R6p-cRGD peptide carrier as a delivery system for anti-angiogenic therapy of EM.


Assuntos
Endometriose , Humanos , Feminino , Animais , Ratos , RNA Interferente Pequeno/genética , Endometriose/tratamento farmacológico , Endometriose/genética , Células Endoteliais , Imunoterapia , Peptídeos
2.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203202

RESUMO

Uterine leiomyoma (UL) is a prevalent benign tumor in women that frequently gives rise to a multitude of reproductive complications. The use of suicide gene therapy has been proposed as a highly promising method for treating UL. To achieve successful gene therapy, it is essential to develop carriers that can efficiently transport nucleic acids into targeted cells and tissues. The instability of polyplexes in blood and other biological fluids is a crucial factor to consider when using non-viral carriers. In this study, we present serum-resistant and cRGD-modified DNA complexes for targeted delivery genes to UL cells. Ternary polyplexes were formed by incorporating cystine-cross-linked polyglutamic acid modified with histidine residues. We employed two techniques in the production of cross-linked polyanionic coating: matrix polymerization and oxidative polycondensation. In this study, we investigated the physicochemical properties of ternary DNA complexes, including the size and zeta-potential of the nanoparticles. Additionally, we evaluated cellular uptake, toxicity levels, transfection efficiency and specificity in vitro. The study involved introducing the HSV-TK gene into primary UL cells as a form of suicide gene therapy modeling. We have effectively employed ternary peptide-based complexes for gene delivery into the UL organtypic model. By implementing in situ suicide gene therapy, the increase in apoptosis genes expression was detected, providing conclusive evidence of apoptosis occurring in the transfected UL tissues. The results of the study strongly suggest that the developed ternary polyplexes show potential as a valuable tool in the implementation of suicide gene therapy for UL.


Assuntos
Leiomioma , Ácidos Nucleicos , Humanos , Feminino , DNA/genética , Leiomioma/genética , Leiomioma/terapia , Apoptose , Terapia Genética
3.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163086

RESUMO

Suicide gene therapy was suggested as a possible strategy for the treatment of uterine fibroids (UFs), which are the most common benign tumors inwomen of reproductive age. For successful suicide gene therapy, DNAtherapeutics should be specifically delivered to UF cells. Peptide carriers are promising non-viral gene delivery systems that can be easily modified with ligands and other biomolecules to overcome DNA transfer barriers. Here we designed polycondensed peptide carriers modified with a cyclic RGD moiety for targeted DNA delivery to UF cells. Molecular weights of the resultant polymers were determined, and inclusion of the ligand was confirmed by MALDI-TOF. The physicochemical properties of the polyplexes, as well as cellular DNA transport, toxicity, and transfection efficiency were studied, and the specificity of αvß3 integrin-expressing cell transfection was proved. The modification with the ligand resulted in a three-fold increase of transfection efficiency. Modeling of the suicide gene therapy by transferring the HSV-TK suicide gene to primary cells obtained from myomatous nodes of uterine leiomyoma patients was carried out. We observed up to a 2.3-fold decrease in proliferative activity after ganciclovir treatment of the transfected cells. Pro- and anti-apoptotic gene expression analysis confirmed our findings that the developed polyplexes stimulate UF cell death in a suicide-specific manner.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Leiomioma/terapia , Peptídeos Cíclicos/química , Simplexvirus/genética , Timidina Quinase/genética , Neoplasias Uterinas/terapia , Feminino , Humanos , Leiomioma/genética , Leiomioma/patologia , Ligantes , Timidina Quinase/administração & dosagem , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia
4.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500454

RESUMO

Uterine leiomyoma is the most common benign tumor of the reproductive system. Current therapeutic options do not simultaneously meet the requirements of long-term efficiency and fertility preservation. Suicide gene delivery can be proposed as a novel approach to uterine leiomyoma therapy. Non-viral vehicles are an attractive approach to DNA delivery for gene therapy of both malignant and benign tumors. Peptide-based vectors are among the most promising candidates for the development of artificial viruses, being able to efficiently cross barriers of DNA transport to cells. Here we described nanoparticles composed of cysteine-crosslinked polymer and histidine-arginine-rich peptide modified with iRGD moiety and characterized them as vehicles for plasmid DNA delivery to pancreatic cancer PANC-1 cells and the uterine leiomyoma cell model. Several variants of nanoparticles were formulated with different targeting ligand content. The physicochemical properties that were studied included DNA binding and protection, interaction with polyanions and reducing agents, size, structure and zeta-potential of the peptide-based nanoparticles. Cytotoxicity, cell uptake and gene transfection efficiency were assessed in PANC-1 cells with GFP and LacZ-encoding plasmids. The specificity of gene transfection via αvß3 integrin binding was proved in competitive transfection. The therapeutic potential was evaluated in a uterine leiomyoma cell model using the suicide gene therapy approach. The optimal formulation was found to be at the polyplex with the highest iRGD moiety content being able to transfect cells more efficiently than control PEI. Suicide gene therapy using the best formulation resulted in a significant decrease of uterine leiomyoma cells after ganciclovir treatment. It can be concluded that the application of iRGD-modified peptide-based nanoparticles has a high potential for cellular delivery of DNA therapeutics in favor of uterine leiomyoma gene therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Integrinas/genética , Transfecção , Peptídeos/química , Nanopartículas/química , DNA/química , Plasmídeos
5.
Ann Hum Genet ; 83(2): 73-81, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30246859

RESUMO

Methylation profiles of CpG islands within the SLC23A2, CDK2AP1, and DYNC1H1 genes and their association with spinal muscular atrophy (SMA) severity were studied. High clinical heterogeneity of SMA suggests the existence of different factors modifying SMA phenotype with gene methylation as a plausible one. The genes picked up in our earlier genome-wide methylation studies of SMA patients demonstrated obvious differences in their methylation patterns, thus suggesting the likely involvement of their protein products in SMA development. Significantly decreased methylation of CpG islands within exon 37 of the DYNC1H1 gene was observed in patients with a severe SMA manifestation (type I) compared to mildly affected SMA patients (types III-IV). This finding provides new information on peculiarities of methylation in clinically different types of SMA patients and gives a clue for identification of new SMA modifiers.


Assuntos
Ilhas de CpG , Dineínas do Citoplasma/genética , Metilação de DNA , Atrofia Muscular Espinal/genética , Adolescente , Adulto , Criança , Pré-Escolar , Éxons , Humanos , Adulto Jovem
6.
Gene Ther ; 25(8): 548-555, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30254304

RESUMO

Development of gene therapy for endometriosis requires inhibition of vascularization in endometrial lesions. We have previously developed CXCR4 receptor-targeted siRNA carrier L1 and observed efficient RNAi-mediated down-regulation of VEGFA gene expression in endothelial cells followed by decrease in VEGFA protein production and inhibition of cell migration. In this study we evaluated L1 carrier as non-viral vector for anti-VEGFA siRNA delivery into endometrial implants in rat subcutaneous endometriosis model created by subcutaneous auto-transplantation of uterus horn's fragments. Therapeutic anti-angiogenic efficiency of anti-VEGFA siRNA/L1 polyplexes was evaluated by lesion size measurement, histopathologic examination, immunohistochemical staining and real-time reverse transcriptase-PCR analysis. After in vivo administration of anti-VEGFA siRNA we observed a 55-60% inhibition of endometriotic lesions growth and approximately two-fold decrease in VEGFA gene expression in comparison with untreated implants. Results of immunohistochemical examination of endometriotic lesions confirmed anti-angiogenic effects of anti-VEGFA siRNA/L1 polyplexes. Ultimately, our results demonstrate the efficiency of anti-angiogenic treatment of EM by means of anti-VEGFA siRNA delivery with L1 peptide-based carrier.


Assuntos
Endometriose/terapia , Técnicas de Transferência de Genes , Terapêutica com RNAi/métodos , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Endométrio/metabolismo , Feminino , Peptídeos/química , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Curr Genomics ; 19(5): 339-355, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30065610

RESUMO

Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutations in the SMN1 gene. Being a monogenic disease, it is characterized by high clinical heterogeneity. Variations in penetrance and severity of symptoms, as well as clinical discrepancies between affected family members can result from modifier genes influence on disease manifestation. SMN2 gene copy number is known to be the main phenotype modifier and there is growing evidence of additional factors contributing to SMA severity. Potential modifiers of spinal muscular atrophy can be found among the wide variety of different factors, such as multiple proteins interacting with SMN or promoting motor neuron survival, epigenetic modifications, transcriptional or splicing factors influencing SMN2 expression. Study of these factors enables to reveal mechanisms underlying SMA pathology and can have pronounced clinical application.

8.
Bioorg Med Chem Lett ; 27(21): 4781-4785, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29017784

RESUMO

The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles.


Assuntos
Arginina/metabolismo , DNA/metabolismo , Sinais de Localização Nuclear/metabolismo , Peptídeos/metabolismo , Vírus 40 dos Símios/metabolismo , DNA/química , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HeLa , Humanos , Hidroxiureia/toxicidade , Microscopia Confocal , Sinais de Localização Nuclear/química , Peptídeos/química , Peptídeos/toxicidade , Transfecção
9.
Methods Protoc ; 7(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38392683

RESUMO

Spinal muscular atrophy is a neuromuscular disorder caused by mutations in both copies of the survival motor neuron gene 1 (SMN1), which lead to reduction in the production of the SMN protein. Currently, there are several therapies that have been approved for SMA, with many more undergoing active research. While various biomarkers have been proposed for assessing the effectiveness of SMA treatment, a universally accepted one still has not been identified. This study aimed to describe a fast and reliable method using the number of gems in cell nuclei as a potential tool for assessment of splicing correction of oligonucleotide efficacy in SMA cells. To gain insight into whether the number of gems in cell nuclei varies based on their SMN genotype and whether the increase in gem number is associated with therapeutic response, we utilized fibroblast cell cultures obtained from a patient with SMA type II and from a healthy individual. We discovered a remarkable difference in the number of gems found in the nuclei of these cells, specifically when counting gems per 100 nuclei. The SMA fibroblasts treated with antisense oligonucleotide showed beneficial effects in correcting the abnormal splicing of SMN2 exon 7. It was observed that there was a significant increase in the number of gems in the treated cells compared to the intact SMA cells. The results obtained significantly correlate with an increase of full-length SMN transcript sharing. Based on our findings, we propose using the quantity of gems as a reliable biomarker for SMA drug development.

10.
Int J Neonatal Screen ; 10(1)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38390973

RESUMO

Spinal muscular atrophy 5q (SMA) is one of the most common neuromuscular inherited diseases and is the most common genetic cause of infant mortality. SMA is associated with homozygous deletion of exon 7 in the SMN1 gene. Recently developed drugs can improve the motor functions of infants with SMA when they are treated in the pre-symptomatic stage. With aim of providing an early diagnosis, newborn screening (NBS) for SMA using a real-time PCR assay with dried blood spots (DBS) was performed from January 2022 through November 2022 in Saint Petersburg, which is a representative Russian megapolis. Here, 36,140 newborns were screened by the GenomeX real-time PCR-based screening test, and three genotypes were identified: homozygous deletion carriers (4 newborns), heterozygous carriers (772 newborns), and wild-type individuals (35,364 newborns). The disease status of all four newborns that screened positive for the homozygous SMN1 deletion was confirmed by alternate methods. Two of the newborns had two copies of SMN2, and two of the newborns had three copies. We determined the incidence of spinal muscular atrophy in Saint Petersburg to be 1 in 9035 and the SMA carrier frequency to be 1 in 47. In conclusion, providing timely information regarding SMN1, confirmation of disease status, and SMN2 copy number as part of the SMA newborn-screening algorithm can significantly improve clinical follow-up, testing of family members, and treatment of patients with SMA.

11.
Biomedicines ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002071

RESUMO

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by mutations in the SMN1 gene. Existing therapies demonstrate positive results on SMA patients but still might be ameliorated in efficacy and price. In the presented study we designed antisense oligonucleotides (AONs), targeting intronic splicing silencer sites, some were modified with 2'-O-methyl, others with LNA. The AONs have been extensively tested in different concentrations, both individually and combined, in order to effectively target the ISS-N1 and A+100G splicing silencer regions in intron 7 of the SMN2 gene. By treating SMA-cultured fibroblasts with certain AONs, we discovered a remarkable increase in the levels of full-length SMN transcripts and the number of nuclear gems. This increase was observed to be dose-dependent and reached levels comparable to those found in healthy cells. When added to cells together, most of the tested molecules showed a remarkable synergistic effect in correcting splicing. Through our research, we have discovered that the impact of oligonucleotides is greatly influenced by their length, sequence, and pattern of modification.

12.
Pharmaceutics ; 15(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631322

RESUMO

Anti-angiogenic RNAi-based therapy can be considered as a possible strategy for the treatment of endometriosis (EM), which is the most common gynecological disease. Targeted delivery of siRNA therapeutics is a prerequisite for successful treatment without adverse effects. Here we evaluated the RGD1-R6 peptide carrier as a non-viral vehicle for targeted siRNA delivery to endothelial cells in vitro and endometrial implants in vivo. The physicochemical properties of the siRNA complexes, cellular toxicity, and GFP and VEGFA gene silencing efficiency were studied, and anti-angiogenic effects were proved in cellular and animal models. The modification of siRNA complexes with iRGD ligand resulted in a two-fold increase in gene knockdown efficiency and three-fold decrease in endothelial cells' migration in vitro. Modeling of EM in rats with the autotransplantation of endometrial tissue subcutaneously was carried out. Efficiency of anti-angiogenic EM therapy in vivo by anti-VEGF siRNA/RGD1-R6 complexes was evaluated by the implants' volume measurement, CD34 immunohistochemical staining, and VEGFA gene expression analysis. We observed a two-fold decrease in endometriotic implants growth and a two-fold decrease in VEGFA gene expression in comparison with saline-treated implants. RNAi-mediated therapeutic effects were comparable with Dienogest treatment efficiency in a rat EM model. Taken together, these findings demonstrate the advantages of RGD1-R6 peptide carrier as a delivery system for RNAi-based therapy of EM.

13.
Bioengineering (Basel) ; 9(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35324801

RESUMO

Suicidegene therapy is considered a promising approach for the treatment of uterine leiomyoma (UL), a benign tumor in women characterized by precise localization. In this study, we investigate the efficiency of αvß3 integrin-targeted arginine-rich peptide carrier R6p-cRGD electrostatically bound to magnetic nanoparticles (MNPs) for targeted DNA delivery into the UL cells. The physico-chemical and cytotoxic properties, transfection efficiency, and specificity of R6p-cRGD/DNA/MNPs polyplexes were evaluated. The addition of MNPs resulted in a decrease in the time needed for successful transfection with simultaneous increase in efficiency. We revealed a therapeutic effect on primary UL cells after delivery of plasmid encoding the herpes simplex virus type 1 (HSV-1) thymidine kinase gene. Treatment with ganciclovir resulted in 20% efficiency of suicide gene therapy in UL cells transfected with the pPTK-1 plasmid. Based on these results, we conclude that the use of cationic peptide carriers with MNPs can be promising for the development of modular non-viral carriers for suicide gene delivery to UL cells.

14.
Genes (Basel) ; 13(10)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36292797

RESUMO

The elevation of SMN transcript and protein level remains the principal aim of SMA therapy. Still, there is no standard molecular biomarker for the assessment of its efficacy. In the current study, we tested three methods of SMN transcript level measurement using real-time RT-PCR, quantitative fluorescent RT-PCR, and a semiquantitative RT-PCR gel densitometric assay. We examined several potential mRNA-based biomarkers and examined their sensitivity and reliability by comparing the obtained values in peripheral blood mononuclear cells of SMA patients, SMA carriers, and healthy individuals. We found that the mean percentage of full-length (FL-SMN) transcripts relative to the total sum of FL-SMN and exon 7-deleted (Δ7 SMN) transcripts detected by semiquantitative and quantitative fluorescence RT-PCR differed significantly between the three analyzed groups. The relevance of this biomarker was proven in an SMN2-targeting therapeutic experiment. We showed that the values of the biomarker changed significantly in SMA fibroblast cell cultures after treatment with therapeutic antisense oligonucleotides targeting the ISS-N1 site in intron 7 of the SMN2 gene. The obtained results indicate the convenience of using the mean percentage of FL-SMN transcripts determined by semiquantitative and quantitative fluorescence RT-PCR as a putative biomarker for the assessment of SMA therapy efficacy in vitro.


Assuntos
Leucócitos Mononucleares , Atrofia Muscular Espinal , Humanos , Leucócitos Mononucleares/metabolismo , Reprodutibilidade dos Testes , Atrofia Muscular Espinal/genética , RNA Mensageiro/genética , Biomarcadores , Oligonucleotídeos Antissenso
15.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34681181

RESUMO

Triple negative breast cancer (TNBC) is one of the deadliest types of cancer for women of different age groups. Frequently this cancer does not respond to conservative treatment. Combinatorial RNAi can be suggested as an advanced approach to TNBC therapy. Due to the fact that TNBC cells overexpress chemokine receptor 4 we used modular L1 peptide-based nanoparticles modified with CXCR4 ligand for combinatorial delivery of siRNAs suppressing major transduction pathways. TNBC cell line MDA-MB-231 was used as a cellular model. Genes encoding the AQP3, CDC20, and COL4A2 proteins responsible for proliferative activity in TNBC cells were selected as RNAi targets. The siRNA binding ability of the carrier was studied at different charge ratios. The silencing specificity was demonstrated for all siRNAs studied. Alamar Blue proliferation assay has shown significant reduction in the anti-proliferative activity after combinatorial siRNA transfection compared to single siRNA delivery. The most significant synergistic effect has been demonstrated for combinatorial transfection of anti-COL4A2 and anti-CDC20 siRNAs what resulted in 1.5-2 fold inhibition of proliferation and migration of TNBC cells. Based on our findings, we have concluded that combinatorial treatment by CXCR4-ligand modified L1-polyplexes formed with AQP3, CDC20, and COL4A2 siRNAs effectively inhibits proliferation of TNBC cells and can be suggested as useful tool for RNAi-mediated cancer therapy.

16.
Pharmaceutics ; 13(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540912

RESUMO

Uterine leiomyoma (UL) is one of the most common benign tumors in women that often leads to many reproductive complications. Suicide genetherapy was suggested as a promising approach for UL treatment. In the present study, we describe iRGD ligand-conjugated cysteine-rich peptide carrier RGD1-R6 for targeted DNA delivery to αvß3 integrin-expressing primary UL cells. The physico-chemical properties, cytotoxicity, transfection efficiency and specificity of DNA/RGD1-R6 polyplexes were investigated. TheHSV-1thymidine kinase encoding plasmid delivery to PANC-1pancreatic carcinoma cells and primary UL cells resulted in significant suicide gene therapy effects. Subsequent ganciclovir treatment decreased cells proliferative activity, induced of apoptosis and promoted cells death.The obtained results allow us to concludethatthe developed RGD1-R6 carrier can be considered a promising candidate for suicide gene therapy of uterine leiomyoma.

17.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050526

RESUMO

Efficient and specific delivery of nucleic acid (NA) therapeutics to tumor cells is extremely important for cancer gene therapy. Various therapeutic strategies include delivery of DNA-therapeutics such as immunostimulatory or suicide genes and delivery of siRNA-therapeutics able to silence expression of cancer-related genes. Peptides are a promising class of non-viral vehicles which are biodegradable and can efficiently condense, protect and specifically deliver NA to the cells. Here we designed arginine-histidine-rich peptide carriers consisting of an iRGD ligand to target αvß3 integrins and studied them as vehicles for DNA and siRNA delivery to cancer cells. Combination of iRGD-modified and unmodified arginine-histidine-rich peptides during NA complexation resulted in carriers with different ligand contents. The NA-binding and protecting properties in vitro transfection efficiency and cytotoxicity of the DNA- and siRNA-polyplexes were studied and the most efficient carrier RGD1 was determined. The ability of the peptides to mediate specific intracellular uptake was confirmed inhuman cervical carcinoma (HeLa), human kidney (293T) and human pancreatic (PANC-1) cell lines with different αvß3 integrins surface expression. By means of RGD1 carrier, efficient delivery of the herpes simplex virus (HSV-1) thymidine kinase gene to PANC-1 cells was demonstrated. Subsequent ganciclovir treatment led to a reduction of PANC-1 cells' viability by up to 54%. Efficient RNAi-mediated down-regulation of GFP and VEGFA gene expression was achieved in MDA-MB-231-GFP+ breast cancer and EA.hy926 endothelial cells, respectively, by means of RGD1/siRNA polyplexes. Here we demonstrated that the peptide carrier RGD1 can be considered as promising candidate for development of NA therapeutics delivery systems useful in cancer gene therapy.

18.
Methods Mol Biol ; 1974: 57-68, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31098995

RESUMO

Discovery of small interfering RNA as a tool for specific gene inhibition led to the development of new therapeutic strategy for the treatment of cancers. The efficacious delivery of therapeutic siRNAs into the cells is a crucial step in RNA interference (RNAi) application, but it remains challenging. Non-viral vectors can provide specific cellular uptake, stable siRNA complex formation, and intracellular siRNA release. Recently, we evaluated modular peptide carrier L1 bearing CXCR4 targeting ligand for its ability to condense siRNA and facilitate endosomal escape and VEGFA gene silencing in CXCR4-expressing endothelial and glioblastoma cells. The present chapter showcases the ability of L1 targeted peptide carrier to form complexes with siRNA and provide efficient VEGFA gene knockdown. We showed that siRNA delivery by means of L1 peptide carrier can result in significant decrease of VEGFA gene expression in A172 glioblastoma cells and in EA.hy 926 endothelial cells. Also, delivery of anti-VEGFA siRNA/peptide complexes led to significant inhibition of endothelial cell migration. Our results showed that L1 peptide carrier modified with CXCR4 ligand is a promising tool for targeted siRNA delivery into CXCR4-expressing cancer and endothelial cells.


Assuntos
Terapia Genética , Glioblastoma/genética , RNA Interferente Pequeno/genética , Receptores CXCR4/genética , Fator A de Crescimento do Endotélio Vascular/genética , Células Endoteliais/patologia , Inativação Gênica , Glioblastoma/terapia , Humanos , Peptídeos/genética , Peptídeos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/genética
19.
Pharmaceutics ; 11(6)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174285

RESUMO

Angiogenesis is a process of new blood vessel formation, which plays a significant role in carcinogenesis and the development of diseases associated with pathological neovascularization. An important role in the regulation of angiogenesis belongs to several key pathways such as VEGF-pathways, TGF-ß-pathways, and some others. Introduction of small interfering RNA (siRNA) against genes of pro-angogenic factors is a promising strategy for the therapeutic suppression of angiogenesis. These siRNA molecules need to be specifically delivered into endothelial cells, and non-viral carriers modified with cellular receptor ligands can be proposed as perspective delivery systems for anti-angiogenic therapy purposes. Here we used modular peptide carrier L1, containing a ligand for the CXCR4 receptor, for the delivery of siRNAs targeting expression of VEGFA, VEGFR1 and endoglin genes. Transfection properties of siRNA/L1 polyplexes were studied in CXCR4-positive breast cancer cells MDA-MB-231 and endothelial cells EA.Hy926. We have demonstrated the efficient down-regulation of endothelial cells migration and proliferation by anti-VEGFA, anti-VEGFR1, and anti-endoglin siRNA-induced silencing. It was found that the efficiency of anti-angiogenic treatment can be synergistically improved via the combinatorial delivery of anti-VEGFA and anti-VEGFR1 siRNAs. Thus, this approach can be useful for the development of therapeutic angiogenesis inhibition.

20.
PLoS One ; 10(3): e0121964, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821969

RESUMO

Spinal muscular atrophy (SMA) is a monogenic neurodegenerative disorder subdivided into four different types. Whole genome methylation analysis revealed 40 CpG sites associated with genes that are significantly differentially methylated between SMA patients and healthy individuals of the same age. To investigate the contribution of methylation changes to SMA severity, we compared the methylation level of found CpG sites, designed as "targets", as well as the nearest CpG sites in regulatory regions of ARHGAP22, CDK2AP1, CHML, NCOR2, SLC23A2 and RPL9 in three groups of SMA patients. Of notable interest, compared to type I SMA male patients, the methylation level of a target CpG site and one nearby CpG site belonging to the 5'UTR of SLC23A2 were significantly hypomethylated 19-22% in type III-IV patients. In contrast to type I SMA male patients, type III-IV patients demonstrated a 16% decrease in the methylation levels of a target CpG site, belonging to the 5'UTR of NCOR2. To conclude, this study validates the data of our previous study and confirms significant methylation changes in the SLC23A2 and NCOR2 regulatory regions correlates with SMA severity.


Assuntos
Metilação de DNA/genética , Correpressor 2 de Receptor Nuclear/genética , Transportadores de Sódio Acoplados à Vitamina C/genética , Atrofias Musculares Espinais da Infância/genética , Regiões 5' não Traduzidas/genética , Adolescente , Sequência de Bases , Estudos de Casos e Controles , Pré-Escolar , Ilhas de CpG/genética , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA