Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(12): 4484-9, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24623855

RESUMO

The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.


Assuntos
Células-Tronco Embrionárias/citologia , Animais , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Transgenes , Inativação do Cromossomo X
2.
EMBO J ; 31(9): 2103-16, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22446391

RESUMO

The function of metabolic state in stemness is poorly understood. Mouse embryonic stem cells (ESC) and epiblast stem cells (EpiSC) are at distinct pluripotent states representing the inner cell mass (ICM) and epiblast embryos. Human embryonic stem cells (hESC) are similar to EpiSC stage. We now show a dramatic metabolic difference between these two stages. EpiSC/hESC are highly glycolytic, while ESC are bivalent in their energy production, dynamically switching from glycolysis to mitochondrial respiration on demand. Despite having a more developed and expanding mitochondrial content, EpiSC/hESC have low mitochondrial respiratory capacity due to low cytochrome c oxidase (COX) expression. Similarly, in vivo epiblasts suppress COX levels. These data reveal EpiSC/hESC functional similarity to the glycolytic phenotype in cancer (Warburg effect). We further show that hypoxia-inducible factor 1α (HIF1α) is sufficient to drive ESC to a glycolytic Activin/Nodal-dependent EpiSC-like stage. This metabolic switch during early stem-cell development may be deterministic.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ativinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , DNA Mitocondrial/análise , Feminino , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Prostaglandina-Endoperóxido Sintases/metabolismo
3.
Dev Cell ; 52(2): 236-250.e7, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31991105

RESUMO

Regulation of embryonic diapause, dormancy that interrupts the tight connection between developmental stage and time, is still poorly understood. Here, we characterize the transcriptional and metabolite profiles of mouse diapause embryos and identify unique gene expression and metabolic signatures with activated lipolysis, glycolysis, and metabolic pathways regulated by AMPK. Lipolysis is increased due to mTORC2 repression, increasing fatty acids to support cell survival. We further show that starvation in pre-implantation ICM-derived mouse ESCs induces a reversible dormant state, transcriptionally mimicking the in vivo diapause stage. During starvation, Lkb1, an upstream kinase of AMPK, represses mTOR, which induces a reversible glycolytic and epigenetically H4K16Ac-negative, diapause-like state. Diapause furthermore activates expression of glutamine transporters SLC38A1/2. We show by genetic and small molecule inhibitors that glutamine transporters are essential for the H4K16Ac-negative, diapause state. These data suggest that mTORC1/2 inhibition, regulated by amino acid levels, is causal for diapause metabolism and epigenetic state.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Blastocisto/metabolismo , Embrião de Mamíferos/citologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células-Tronco Embrionárias/citologia , Técnicas de Inativação de Genes , Camundongos
4.
Nat Cell Biol ; 17(12): 1523-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26571212

RESUMO

For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs).  Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development.


Assuntos
Diferenciação Celular , Epigênese Genética/genética , Células-Tronco Embrionárias Humanas/metabolismo , Metaboloma , Animais , Western Blotting , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica/métodos , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Lisina/metabolismo , Espectrometria de Massas , Metabolômica/métodos , Metilação , Camundongos , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , S-Adenosilmetionina/metabolismo , Transdução de Sinais
5.
Development ; 134(1): 177-87, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17164423

RESUMO

Retinoic acid (RA) is essential for normal vertebrate development, including the patterning of the central nervous system. During early embryogenesis, RA is produced in the trunk mesoderm through the metabolism of vitamin A derived from the maternal diet and behaves as a morphogen in the developing hindbrain where it specifies nested domains of Hox gene expression. The loss of endogenous sources of RA can be rescued by treatment with a uniform concentration of exogenous RA, indicating that domains of RA responsiveness can be shaped by mechanisms other than the simple diffusion of RA from a localized posterior source. Here, we show that the cytochrome p450 enzymes of the Cyp26 class, which metabolize RA into polar derivatives, function redundantly to shape RA-dependent gene-expression domains during hindbrain development. In zebrafish embryos depleted of the orthologs of the three mammalian CYP26 genes CYP26A1, CYP26B1 and CYP26C1, the entire hindbrain expresses RA-responsive genes that are normally restricted to nested domains in the posterior hindbrain. Furthermore, we show that Cyp26 enzymes are essential for exogenous RA to rescue hindbrain patterning in RA-depleted embryos. We present a ;gradient-free' model for hindbrain patterning in which differential RA responsiveness along the hindbrain anterior-posterior axis is shaped primarily by the dynamic expression of RA-degrading enzymes.


Assuntos
Padronização Corporal/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Rombencéfalo/embriologia , Tretinoína/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Homeobox , Hibridização In Situ , Modelos Biológicos , Oligonucleotídeos Antissenso/farmacologia , Organogênese , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/metabolismo , Tretinoína/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA