Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(47): 20071-20079, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33196182

RESUMO

Defect passivation constitutes one of the most commonly used strategies to fabricate highly efficient perovskite solar cells (PSCs). However, the durability of the passivation effects under harsh operational conditions has not been extensively studied regardless of the weak and vulnerable secondary bonding between the molecular passivation agents and perovskite crystals. Here, we incorporated strategically designed passivating agents to investigate the effect of their interaction energies on the perovskite crystals and correlated these with the performance and longevity of the passivation effects. We unraveled that the passivation agents with a stronger interaction energy are advantageous not only for effective defect passivation but also to suppress defect migration. The prototypical PSCs treated with the optimal passivation agent exhibited superior performance and operational stability, retaining 81.9 and 85.3% of their initial performance under continuous illumination or nitrogen at 85 °C after 1008 h, respectively, while the reference device completely degraded during that time. This work provides important insights into designing operationally durable defect passivation agents for perovskite optoelectronic devices.

2.
Nat Mater ; 18(11): 1207-1214, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31548629

RESUMO

Strengthening of metals through nanoscale grain boundaries and coherent twin boundaries is manifested by a maximum strength-a phenomenon known as Hall-Petch breakdown. Different softening mechanisms are considered to occur for nanocrystalline and nanotwinned materials. Here, we report nanocrystalline-nanotwinned Ag materials that exhibit two strength transitions dissimilar from the above mechanisms. Atomistic simulations show three distinct strength regions as twin spacing decreases, delineated by positive Hall-Petch strengthening to grain-boundary-dictated (near-zero Hall-Petch slope) mechanisms and to softening (negative Hall-Petch slope) induced by twin-boundary defects. An ideal maximum strength is reached for a range of twin spacings below 7 nm. We synthesized nanocrystalline-nanotwinned Ag with hardness 3.05 GPa-42% higher than the current record, by segregating trace concentrations of Cu impurity (<1.0 weight (wt)%). The microalloy retains excellent electrical conductivity and remains stable up to 653 K; 215 K better than for pure nanotwinned Ag. This breaks the existing trade-off between strength and electrical conductivity, and demonstrates the potential for creating interface-dominated materials with unprecedented mechanical and physical properties.

3.
Nat Mater ; 12(8): 697-702, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23685864

RESUMO

Coherent twin boundaries (CTBs) are widely described, both theoretically and experimentally, as perfect interfaces that play a significant role in a variety of materials. Although the ability of CTBs in strengthening, maintaining the ductility and minimizing the electron scattering is well documented, most of our understanding of the origin of these properties relies on perfect-interface assumptions. Here we report experiments and simulations demonstrating that as-grown CTBs in nanotwinned copper are inherently defective with kink-like steps and curvature, and that these imperfections consist of incoherent segments and partial dislocations. We further show that these defects play a crucial role in the deformation mechanisms and mechanical behaviour of nanotwinned copper. Our findings offer a view of the structure of CTBs that is largely different from that in the literature, and underscore the significance of imperfections in nanotwin-strengthened materials.

4.
Heliyon ; 10(1): e23202, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169844

RESUMO

Laser-powder bed fusion additive manufacturing (LPBF-AM) of metals is rapidly becoming one of the most important materials processing pathways for next-generation metallic parts and components in a number of important applications. However, the large parametric space that characterizes laser-based LPBF-AM makes it challenging to understand what are the variables controlling the microstructural and mechanical property outcomes. Sensitivity studies based on direct LPBF-AM processing are costly and lengthy to conduct, and are subjected to the specifications and variability of each printer. Here we develop a fast-throughput numerical approach that simulates the LPBF-AM process using a cellular automaton model of dynamic solidification and grain growth. This is accompanied by a polycrystal plasticity model that captures grain boundary strengthening due to complex grain geometry and furnishes the stress-strain curves of the resulting microstructures. Our approach connects the processing stage with the mechanical testing stage, thus capturing the effect of processing variables such as the laser power, laser spot size, scan speed, and hatch width on the yield strength and tangent moduli of the processed materials. When applied to pure Cu and stainless 316L steel, we find that laser power and scan speed have the strongest influence on grain size in each material, respectively.

5.
Sci Adv ; 10(18): eadj8395, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701213

RESUMO

The development of radiation-tolerant structural materials is an essential element for the success of advanced nuclear energy concepts. A proven strategy to increase radiation resistance is to create microstructures with a high density of internal defect sinks, such as grain boundaries (GBs). However, as GBs absorb defects, they undergo internal transformations that limit their ability to capture defects indefinitely. Here, we show that, as the sink efficiency of GBs becomes exhausted with increasing irradiation dose, networks of irradiation loops form in the vicinity of saturated or near-saturated GB, maintaining and even increasing their capacity to continue absorbing defects. The formation of these networks fundamentally changes the driving force for defect absorption at GB, from "chemical" to "elastic." Using thermally-activated dislocation dynamics simulations, we show that these networks are consistent with experimental measurements of defect densities near GB. Our results point to these networks as a natural continuation of the GB once they exhaust their internal defect absorption capacity.

6.
Materials (Basel) ; 15(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955403

RESUMO

In this work, we study vacancy energetics in the equiatomic Nb-Mo-Ta-W alloy, especially vacancy formation and migration energies, using molecular statics calculations based on a spectral neighbor analysis potential specifically developed for Nb-Mo-Ta-W. We consider vacancy properties in bulk environments as well as near edge dislocation cores, including the effect of short-range order (SRO) by preparing supercells through Metropolis Monte-Carlo relaxations and temperature on the calculation. The nudged elastic band (NEB) method is applied to study vacancy migration energies. Our results show that both vacancy formation energies and vacancy migration energies are statistically distributed with a wide spread, on the order of 1.0 eV in some cases, and display a noticeable dependence on SRO. We find that, in some cases, vacancies can form with very low energies at edge dislocation cores, from which we hypothesize the formation of stable 'superjogs' on edge dislocation lines. Moreover, the large spread in vacancy formation energies results in an asymmetric thermal sampling of the formation energy distribution towards lower values. This gives rise to effective vacancy formation energies that are noticeably lower than the distribution averages. We study the effect that this phenomenon has on the vacancy diffusivity in the alloy and discuss the implications of our findings on the structural features of Nb-Mo-Ta-W.

7.
Materials (Basel) ; 15(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744151

RESUMO

Helium bubbles are known to form in nuclear reactor structural components when displacement damage occurs in conjunction with helium exposure and/or transmutation. If left unchecked, bubble production can cause swelling, blistering, and embrittlement, all of which substantially degrade materials and-moreover-diminish mechanical properties. On the mission to produce more robust materials, nanocrystalline (NC) metals show great potential and are postulated to exhibit superior radiation resistance due to their high defect and particle sink densities; however, much is still unknown about the mechanisms of defect evolution in these systems under extreme conditions. Here, the performances of NC nickel (Ni) and iron (Fe) are investigated under helium bombardment via transmission electron microscopy (TEM). Bubble density statistics are measured as a function of grain size in specimens implanted under similar conditions. While the overall trends revealed an increase in bubble density up to saturation in both samples, bubble density in Fe was over 300% greater than in Ni. To interrogate the kinetics of helium diffusion and trapping, a rate theory model is developed that substantiates that helium is more readily captured within grains in helium-vacancy complexes in NC Fe, whereas helium is more prone to traversing the grain matrices and migrating to GBs in NC Ni. Our results suggest that (1) grain boundaries can affect bubble swelling in grain matrices significantly and can have a dominant effect over crystal structure, and (2) an NC-Ni-based material can yield superior resistance to irradiation-induced bubble growth compared to an NC-Fe-based material and exhibits high potential for use in extreme environments where swelling due to He bubble formation is of significant concern.

8.
Materials (Basel) ; 13(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121442

RESUMO

The formation of elongated zirconium hydride platelets during corrosion of nuclear fuel clad is linked to its premature failure due to embrittlement and delayed hydride cracking. Despite their importance, however, most existing models of hydride nucleation and growth in Zr alloys are phenomenological and lack sufficient physical detail to become predictive under the variety of conditions found in nuclear reactors during operation. Moreover, most models ignore the dynamic nature of clad oxidation, which requires that hydrogen transport and precipitation be considered in a scenario where the oxide layer is continuously growing at the expense of the metal substrate. In this paper, we perform simulations of hydride formation in Zr clads with a moving oxide/metal boundary using a stochastic kinetic diffusion/reaction model parameterized with state-of-the-art defect and solute energetics. Our model uses the solutions of the hydrogen diffusion problem across an increasingly-coarse oxide layer to define boundary conditions for the kinetic simulations of hydrogen penetration, precipitation, and dissolution in the metal clad. Our method captures the spatial dependence of the problem by discretizing all spatial derivatives using a stochastic finite difference scheme. Our results include hydride number densities and size distributions along the radial coordinate of the clad for the first 1.6 h of evolution, providing a quantitative picture of hydride incipient nucleation and growth under clad service conditions.

9.
Nat Commun ; 11(1): 1227, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144258

RESUMO

The Portevin-Le Chatelier (PLC) effect is a phenomenon by which plastic slip in metallic materials becomes unstable, resulting in jerky flow and the onset of inhomogeneous deformation. The PLC effect is thought to be fundamentally caused by the dynamic interplay between dislocations and solute atoms. However, this interplay is almost always inaccessible experimentally due to the extremely fine length and time scales over which it occurs. In this paper, simulations of jerky flow in W-O interstitial solid solutions reveal three dynamic regimes emerging from the simulated strain rate-temperature space: one resembling standard solid solution strengthening, another one mimicking solute cloud formation, and a third one where dislocation/solute coevolution leads to jerky flow as a precursor of dynamic strain aging. The simulations are carried out in a stochastic framework that naturally captures rare events in a rigorous manner, providing atomistic resolution over diffusive time scales using no adjustable parameters.

10.
Adv Mater ; 32(17): e1907769, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32147861

RESUMO

Intrinsically, detrimental defects accumulating at the surface and grain boundaries limit both the performance and stability of perovskite solar cells. Small molecules and bulkier polymers with functional groups are utilized to passivate these ionic defects but usually suffer from volatility and precipitation issues, respectively. Here, starting from the addition of small monomers in the PbI2 precursor, a polymerization-assisted grain growth strategy is introduced in the sequential deposition method. With a polymerization process triggered during the PbI2 film annealing, the bulkier polymers formed will be adhered to the grain boundaries, retaining the previously established interactions with PbI2 . After perovskite formation, the polymers anchored on the boundaries can effectively passivate undercoordinated lead ions and reduce the defect density. As a result, a champion power conversion efficiency (PCE) of 23.0% is obtained, together with a prolonged lifetime where 85.7% and 91.8% of the initial PCE remain after 504 h continuous illumination and 2208 h shelf storage, respectively.

11.
Ultramicroscopy ; 194: 117-125, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114605

RESUMO

Atomic configurations of glassy or amorphous materials containing medium-range order (MRO) may be identified by comparing fluctuation transmission electron microscopy (FTEM) measurements to FTEM simulations obtained using model configurations. Candidate model sizes have traditionally been much thinner than the samples measured experimentally, and publicly available FTEM simulation software has until now omitted microscope parameters, dynamical scattering, and the phase of the diffracted electron wave. We introduce MS-STEM-FEM, an open-source software package for simulating FTEM experiments using established multi-slice TEM simulation techniques to emulate experiment more closely by incorporating microscope parameters and simulating electron scattering and propagation as a complex valued wave. Simulations using established models are compared with results of experimental STEM-FEM to validate the software. Several statistical measures of diffraction are implemented and their responses to model features are compared. Dynamical scattering is found to be less influential than the variety of crystallite orientations which occur in thicker models. Simulations of variable resolution microscopy confirm that cumulative intensity of the FTEM signal decreases with reduced model MRO and increased coherence volume. Advantageous model scaling characteristics and efficient processor performance scaling are demonstrated, along with a study of convergence with respect to pertinent simulation parameters to identify accuracy requirements.

12.
J Phys Condens Matter ; 28(42): 425201, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27541350

RESUMO

We derive an Ising Hamiltonian for kinetic simulations involving interstitial and vacancy defects in binary alloys. Our model, which we term 'ABVI', incorporates solute transport by both interstitial defects and vacancies into a mathematically-consistent framework, and thus represents a generalization to the widely-used ABV model for alloy evolution simulations. The Hamiltonian captures the three possible interstitial configurations in a binary alloy: A-A, A-B, and B-B, which makes it particularly useful for irradiation damage simulations. All the constants of the Hamiltonian are expressed in terms of bond energies that can be computed using first-principles calculations. We implement our ABVI model in kinetic Monte Carlo simulations and perform a verification exercise by comparing our results to published irradiation damage simulations in simple binary systems with Frenkel pair defect production and several microstructural scenarios, with matching agreement found.

13.
Sci Rep ; 5: 17251, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26607496

RESUMO

Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the 〈111〉 crystallographic orientation, we find a degenerate atomic rearrangement process, with two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of 〈111〉 semiconductor crystals, where growth is restrained to one dimension. We calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation.

14.
Phys Rev Lett ; 93(16): 165503, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15525002

RESUMO

This Letter is concerned with the determination of the transition paths attendant to nanovoid growth in aluminum under hydrostatic tension. The analysis is, therefore, based on energy minimization at 0 K. Aluminum is modeled by the Ercolessi-Adams embedded-atom method, and spurious boundary artifacts are mitigated by the use of the quasicontinuum method. Our analysis reveals several stages of pressure buildup separated by yield points. The first yield point corresponds to the formation of highly stable tetrahedral dislocation junctions around the surfaces of the void. The second yield point is caused by the dissolution of the tetrahedral structures and the emission of conventional 1/2<110>[111] and anomalous 1/2<110>[001] dislocation loops.

15.
Nat Mater ; 3(3): 158-63, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14991017

RESUMO

The motion of dislocations in response to stress dictates the mechanical behaviour of materials. However, it is not yet possible to directly observe dislocation motion experimentally at the atomic level. Here, we present the first observations of the long-hypothesized kink-pair mechanism in action using atomistic simulations of dislocation motion in iron. In a striking deviation from the classical picture, dislocation motion at high strain rates becomes rough, resulting in spontaneous self-pinning and production of large quantities of debris. Then, at still higher strain rates, the dislocation stops abruptly and emits a twin plate that immediately takes over as the dominant mode of plastic deformation. These observations challenge the applicability of the Peierls threshold concept to the three-dimensional motion of screw dislocations at high strain rates, and suggest a new interpretation of plastic strength and microstructure of shocked metals.


Assuntos
Ferro/química , Estresse Mecânico
16.
Phys Rev Lett ; 88(25 Pt 1): 255507, 2002 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12097099

RESUMO

We propose a comprehensive mechanism for the formation and growth of <100> interstitial loops in alpha-Fe. This mechanism reconciles long-standing experimental observations of these defects in irradiated ferritic materials with recent atomistic simulations of collision cascades and defect cluster properties in Fe, in which highly mobile 1 / 2<111> clusters are seen to be the dominant feature. Hence, this work provides one of the necessary links to unify simulation with experiments in alpha-Fe and ferritic alloys subject to high-energy particle irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA