Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762097

RESUMO

The determination of RNA integrity is a critical quality assessment tool for gene expression studies where the experiment's success is highly dependent on the sample quality. Since its introduction in 1999, the gold standard in the scientific community has been the Agilent 2100 Bioanalyzer's RNA integrity number (RIN), which uses a 1-10 value system, from 1 being the most degraded, to 10 being the most intact. In 2015, Agilent launched 4200 TapeStation's RIN equivalent, and reported a strong correlation of r2 of 0.936 and a median error < ±0.4 RIN units. To evaluate this claim, we compared the Agilent 4200 TapeStation's RIN equivalent (RINe) and DV200 to the Agilent 2100 Bioanalyzer's RIN for 183 parallel RNA samples. In our study, using RNA from a total of 183 human postmortem brain samples, we found that the RIN and RINe values only weakly correlate, with an r2 of 0.393 and an average difference of 3.2 RIN units. DV200 also only weakly correlated with RIN (r2 of 0.182) and RINe (r2 of 0.347). Finally, when applying a cut-off value of 6.5 for both metrics, we found that 95.6% of samples passed with RIN, while only 23.5% passed with RINe. Our results suggest that even though RIN (Bioanalyzer) and RINe (TapeStation) use the same 1-10 value system, they should not be used interchangeably, and cut-off values should be calculated independently.


Assuntos
Benchmarking , Encéfalo , Humanos , RNA
2.
medRxiv ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461632

RESUMO

Determining RNA integrity is a critical quality assessment tool for gene expression studies where the experiment's success is highly dependent on sample quality. Since its introduction in 1999, the gold standard in the scientific community has been the Agilent 2100 Bioanalyzer's RNA Integrity Number (RIN) which uses a 1-10 value system with 1 being the most degraded to 10 being the most intact. In 2015, Agilent launched the 4200 Tapestation's RIN equivalent and reported a strong correlation of r 2 of 0.936 and median error < ± 0.4 RIN units. To evaluate this claim, we compared the Agilent 4200 Tapestation's RIN equivalent (RINe) and DV200 to the Agilent 2100 Bioanalyzer's RIN for 183 parallel RNA samples. In our study, using RNA from a total of 183 human postmortem brain samples, we found that the RIN and RINe values only weakly correlate with an r 2 of 0.393 and an average difference of 3.2 RIN units. DV200 also only weakly correlated with RIN (r 2 of 0.182) and RINe (r 2 of 0.347). Finally, when applying a cut-off value of 6.5 for both metrics, we found that 95.6% of samples passed with RIN, while only 23.5% passed with RINe. Our results suggest that even though RIN (Bioanalyzer) and RINe (Tapestation) use the same 1-10 value system, they should not be used interchangeably, and cut-off values should be calculated independently.

3.
J Neuropathol Exp Neurol ; 82(6): 457-466, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071794

RESUMO

Cerebral white matter rarefaction (CWMR) was considered by Binswanger and Alzheimer to be due to cerebral arteriolosclerosis. Renewed attention came with CT and MR brain imaging, and neuropathological studies finding a high rate of CWMR in Alzheimer disease (AD). The relative contributions of cerebrovascular disease and AD to CWMR are still uncertain. In 1181 autopsies by the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND), large-format brain sections were used to grade CWMR and determine its vascular and neurodegenerative correlates. Almost all neurodegenerative diseases had more severe CWMR than the normal control group. Multivariable logistic regression models indicated that Braak neurofibrillary stage was the strongest predictor of CWMR, with additional independently significant predictors including age, cortical and diencephalic lacunar and microinfarcts, body mass index, and female sex. It appears that while AD and cerebrovascular pathology may be additive in causing CWMR, both may be solely capable of this. The typical periventricular pattern suggests that CWMR is primarily a distal axonopathy caused by dysfunction of the cell bodies of long-association corticocortical projection neurons. A consequence of these findings is that CWMR should not be viewed simply as "small vessel disease" or as a pathognomonic indicator of vascular cognitive impairment or vascular dementia.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Demência Vascular , Substância Branca , Feminino , Humanos , Substância Branca/patologia , Encéfalo/patologia , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Demência Vascular/patologia
4.
J Neuropathol Exp Neurol ; 81(8): 643-649, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35751438

RESUMO

The Alzheimer disease (AD) neuropathological hallmarks amyloid ß (Aß) and tau neurofibrillary (NF) pathology have been reported in the olfactory bulb (OB) in aging and in different neurodegenerative diseases, which coincides with frequently reported olfactory dysfunction in these conditions. To better understand when the OB is affected in relation to the hierarchical progression of Aß throughout the brain and whether OB pathology might be an indicator of AD severity, we assessed the presence of OB Aß and tau NF pathology in an autopsy cohort of 158 non demented control and 173 AD dementia cases. OB Aß was found in less than 5% of cases in lower Thal phases 0 and 1, in 20% of cases in phase 2, in 60% of cases in phase 3 and in more than 80% of cases in higher Thal phases 4 and 5. OB Aß and tau pathology significantly predicted a Thal phase greater than 3, a Braak NF stage greater than 4, and an MMSE score lower than 24. While OB tau pathology is almost universal in the elderly and therefore is not a good predictor of AD severity, OB Aß pathology coincides with clinically-manifest AD and might prove to be a useful biomarker of the extent of brain spread of both amyloid and tau pathology.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Idoso , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Amiloidose/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Humanos , Bulbo Olfatório/metabolismo , Proteínas tau/metabolismo
5.
medRxiv ; 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33442709

RESUMO

There has been a markedly renewed interest in factors associated with pneumonia, a leading cause of death worldwide, due to its frequent concurrence with pandemics of influenza and Covid-19 disease. Reported predisposing factors to both bacterial pneumonia and pandemic viral lower respiratory infections are wintertime occurrence, older age, obesity, pre-existing cardiopulmonary conditions and diabetes. Also implicated are age-related neurodegenerative diseases that cause parkinsonism and dementia. We investigated the prevalence of autopsy-proven pneumonia in the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND), a longitudinal clinicopathological study, between the years 2006 and 2019 and before the beginning of the Covid-19 pandemic. Of 691 subjects dying at advanced ages (mean 83.4), pneumonia was diagnosed postmortem in 343 (49.6%). There were 185 subjects without dementia or parkinsonism while clinicopathological diagnoses for the other subjects included 319 with Alzheimer's disease dementia, 127 with idiopathic Parkinson's disease, 72 with dementia with Lewy bodies, 49 with progressive supranuclear palsy and 78 with vascular dementia. Subjects with one or more of these neurodegenerative diseases all had higher pneumonia rates, ranging between 50 and 61%, as compared to those without dementia or parkinsonism (40%). In multivariable logistic regression models, male sex and a non-summer death both had independent contributions (ORs of 1.67 and 1.53) towards the presence of pneumonia at autopsy while the absence of parkinsonism or dementia was a significant negative predictor of pneumonia (OR 0.54). Male sex, dementia and parkinsonism may also be risk factors for Covid-19 pneumonia. The apolipoprotein E4 allele, as well as obesity, chronic obstructive pulmonary disease, diabetes, hypertension, congestive heart failure, cardiomegaly and cigarette smoking history, were not significantly associated with pneumonia, in contradistinction to what has been reported for Covid-19 disease.

6.
J Neuropathol Exp Neurol ; 73(1): 72-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24335535

RESUMO

Neuropathologic heterogeneity is often present among Alzheimer disease (AD) patients. We sought to determine whether amyloid imaging measures of AD are affected by concurrent pathologies. Thirty-eight clinically and pathologically defined AD and 17 nondemented patients with quantitative florbetapir F-18 (F-AV-45) positron emission tomography (PET) imaging during life and postmortem histological ß-amyloid quantification and neuropathologic examination were assessed. AD patients were divided on the basis of concurrent pathologies, including those with Lewy bodies (LBs) (n = 21), white matter rarefaction (n = 27), severe cerebral amyloid angiopathy (n = 11), argyrophilic grains (n = 5), and TAR DNA binding protein-43 inclusions (n = 18). Many patients exhibited more than 1 type of concurrent pathology. The ratio of cortical to cerebellar amyloid imaging signal (SUVr) and immunohistochemical ß-amyloid load were analyzed in 6 cortical regions of interest. All AD subgroups had strong and significant correlations between SUVr and histological ß-amyloid measures (p µ 0.001). All AD subgroups had significantly greater amyloid measures versus nondemented patients, and mean amyloid measures did not significantly differ between AD subgroups. When comparing AD cases with and without each pathology, AD cases with LBs had significantly lower SUVr measures versus AD cases without LBs (p = 0.002); there were no other paired comparison differences. These findings indicate that florbetapir-PET imaging is not confounded by neuropathological heterogeneity within AD.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Compostos de Anilina , Etilenoglicóis , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/normas
7.
J Alzheimers Dis ; 34(2): 529-36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23246918

RESUMO

Abnormal phosphorylation of the microtubule-associated protein tau develops in selected brain regions in normal aging and becomes widespread throughout the brain in Alzheimer's disease (AD). Braak and others have described the distribution of neurofibrillary tangles and deposition of abnormally phosphorylated tau (p-tau) and correlated this with the progressive cognitive dysfunction in AD. However, to date there have been no comprehensive studies examining abnormally phosphorylated tau deposition in the spinal cord as part of normal aging or AD. We investigated, using immunohistochemical methods, the presence of p-tau in the spinal cord of 46 cases with a clinicopathological diagnosis of AD as well as 37 non-demented aged (ND) individuals lacking any defined central nervous system-related clinicopathological diagnosis. We found the cervical cord segments to be the most frequently affected subdivision (96% AD versus 43% ND), followed by thoracic (69% AD versus 37% ND), lumbar (65% AD versus 27% ND), and sacral (53% AD versus 13% ND). The spinal cord was often affected at early-stage brain disease, with p-tau spinal cord immunoreactivity in 40% of subjects at Braak neurofibrillary stage I; however, there were no cases having spinal cord p-tau that did not have p-tau within the brain. As p-tau immunoreactivity is present within the spinal cords of ND as well as AD subjects, it is likely that the phosphorylation of spinal cord tau occurs in the preclinical stage of AD, prior to dementia. The presence of significant spinal cord p-tau-immunoreactive pathology has important implications for both the pathogenesis and clinical manifestations of AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Estudos Longitudinais , Masculino , Fosforilação/fisiologia , Medula Espinal/química , Proteínas tau/química
8.
J Alzheimers Dis ; 28(4): 869-76, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22112552

RESUMO

Amyloid imaging may revolutionize Alzheimer's disease (AD) research and clinical practice but is critically limited by an inadequate correlation between cerebral cortex amyloid plaques and dementia. Also, amyloid imaging does not indicate the extent of neurofibrillary tangle (NFT) spread throughout the brain. Currently, the presence of dementia as well as a minimal brain load of both plaques and NFTs is required for the diagnosis of AD. Autopsy studies suggest that striatal amyloid plaques may be mainly restricted to subjects in higher Braak NFT stages that meet clinicopathological diagnostic criteria for AD. Striatal plaques, which are readily identified by amyloid imaging, might therefore be used to predict the presence of a higher Braak NFT stage and clinicopathological AD in living subjects. This study determined the sensitivity and specificity of striatal plaques for predicting a higher Braak NFT stage and clinicopathological AD in a postmortem series of 211 elderly subjects. Subjects included 87 clinicopathologically classified as non-demented elderly controls and 124 with AD. A higher striatal plaque density score (moderate or frequent) had 95.8% sensitivity, 75.7% specificity for Braak NFT stage V or VI and 85.6% sensitivity, 86.2% specificity for the presence of dementia and clinicopathological AD (National Institute on Aging - Reagan Institute "intermediate" or "high"). Amyloid imaging of the striatum may be useful as a predictor, in living subjects, of Braak NFT stage and the presence or absence of dementia and clinicopathological AD. Validation of this hypothesis will require autopsy studies of subjects that had amyloid imaging during life.


Assuntos
Doença de Alzheimer/patologia , Amiloide , Corpo Estriado/patologia , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Idoso , Idoso de 80 Anos ou mais , Amiloide/análise , Feminino , Humanos , Masculino , Valor Preditivo dos Testes
9.
J Parkinsons Dis ; 2(1): 57-65, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22924088

RESUMO

Dementia is a frequent complication of Parkinson's disease (PD). About half of PD dementia (PDD) is hypothesized to be due to progression of the underlying Lewy body pathology into limbic regions and the cerebral cortex while the other half is thought to be due to coexistent Alzheimer's disease. Clinically, however, these are indistinguishable. The spread of amyloid plaques to the striatum has been reported to be a sensitive and specific indicator of dementia due to Alzheimer's disease (AD). The purpose of the present study was to determine if the presence of striatal plaques might also be a useful indicator of the presence of diagnostic levels of AD pathology within PD subjects. We analyzed neuropathologically-confirmed cases of PD without dementia (PDND, N = 31), PDD without AD (PDD, N = 31) and PD with dementia meeting clinicopathological criteria for AD (PDAD, N =40). The minimum diagnostic criterion for AD was defined as including a clinical history of dementia, moderate or frequent CERAD cortical neuritic plaque density and Braak neurofibrillary stage III-VI. Striatal amyloid plaque densities were determined using Campbell-Switzer and Thioflavine S stains. Striatal plaque densities were significantly higher in PDAD compared to PDD (p<0.001). The presence of striatal plaques was approximately 80% sensitive and 80% specific for predicting AD. In comparison, the presence of cerebral cortex plaques alone was highly sensitive (100%) but had poor specificity (48% to 55%). The results suggest that striatal amyloid imaging may be clinically useful for making the distinction between PDD and PDAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA