Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Vet Diagn Invest ; 36(3): 329-337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38212882

RESUMO

Infectious salmon anemia virus (ISAV; Isavirus salaris) causes an economically important disease of Atlantic salmon (Salmo salar L.). ISA outbreaks have resulted in significant losses of farmed salmon globally, often with a sudden onset. However, 2 phenotypically distinct variants of ISAV exist, each with divergent disease outcomes, associated regulations, and control measures. ISAV-HPRΔ, also known as ISAV-HPR deleted, is responsible for ISA outbreaks; ISAV-HPR0, is avirulent and is not known to cause fish mortality. Current detection methodology requires genetic sequencing of ISAV-positive samples to differentiate phenotypes, which may slow responses to disease management. To increase the speed of phenotypic determinations of ISAV, we developed a new, rapid multiplex RT-qPCR method capable of 1) detecting if a sample contains any form of ISAV, 2) discriminating whether positive samples contain HPRΔ or HPR0, and 3) validating RNA extractions with an internal control, all in a single reaction. Following assay development and optimization, we validated this new multiplex on 31 ISAV strains collected from North America and Europe (28 ISAV-HPRΔ, 3 ISAV-HPR0). Finally, we completed an inter-laboratory comparison of this multiplex qPCR with commercial ISAV testing and found that both methods provided equivalent results for ISAV detection.


Assuntos
Doenças dos Peixes , Isavirus , Reação em Cadeia da Polimerase Multiplex , Salmo salar , Animais , Isavirus/genética , Isavirus/isolamento & purificação , Doenças dos Peixes/virologia , Doenças dos Peixes/diagnóstico , Salmo salar/virologia , Reação em Cadeia da Polimerase Multiplex/veterinária , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/diagnóstico , Virulência , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos
2.
J Am Mosq Control Assoc ; 36(4): 249-252, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647110

RESUMO

Man-made stormwater and sewage infrastructure, particularly roadside catch basins, provides widespread habitats for immature mosquitoes in urban and suburban environments. Historically, throughout much of the USA, stormwater, sewage, and industrial wastewater were conducted together through "combined" sewer systems, discharging a combination of stormwater and wastewater into streams. Within recent decades, many cities have replaced these combined sewers with "stormwater only" systems that separate stormwater from wastewater. The objective of this research was to evaluate the implications of this infrastructure conversion for production of Culex pipiens, a primary vector for West Nile virus. On a weekly basis over 14 wk, 20 catch basins (10 combined sewer and 10 stormwater only) were sampled for mosquito larvae and emerging adults using the dipping collection method and floating emergence traps. Abundance of larval Cx. pipiens was higher in combined sewer compared with stormwater-only catch basins, while to the contrary, abundance of adult Cx. pipiens was lower in combined sewer compared with stormwater-only catch basins. This study is the first to reveal that habitat attractiveness and quality for Cx. pipiens may vary between combined sewer and stormwater-only catch basins, and our results contribute to a growing body of research to inform vector management and urban planning efforts as municipalities consider the environmental and public health implications of conversion from combined sewage management to separation of stormwater and wastewater.


Assuntos
Culex , Drenagem Sanitária , Animais , Larva , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA