Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EBioMedicine ; 104: 105153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805853

RESUMO

BACKGROUND: The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS: We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS: Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION: Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING: This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).


Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Imunidade Celular , Vacinas contra Influenza , Influenza Humana , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Anticorpos Antivirais/imunologia , Feminino , Adulto , Masculino , Linfócitos T/imunologia , Imunização Secundária , Interferon gama/metabolismo , Nucleoproteínas/imunologia , Adulto Jovem , Vírus da Influenza A/imunologia
2.
Front Behav Neurosci ; 17: 1130840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37830039

RESUMO

The hippocampus is critical for the precise formation of contextual memories. Overlapping inputs coming from the entorhinal cortex are processed by the trisynaptic pathway to form distinct memories. Disruption in any step of the circuit flow can lead to a lack of memory precision, and to memory interference. We have identified the transcriptional repressor Wilm's Tumor 1 (WT1) as an important regulator of synaptic plasticity involved in memory discrimination in the hippocampus. In male mice, using viral and transgenic approaches, we showed that WT1 deletion in granule cells of the dentate gyrus (DG) disrupts memory discrimination. With electrophysiological methods, we then identified changes in granule cells' excitability and DG synaptic transmission indicating that WT1 knockdown in DG granule cells disrupts the inhibitory feedforward input from mossy fibers to CA3 by decreasing mIPSCs and shifting the normal excitatory/inhibitory (E/I) balance in the DG → CA3 circuit in favor of excitation. Finally, using a chemogenetic approach, we established a causal link between granule cell hyperexcitability and memory discrimination impairments. Our results suggest that WT1 enables a circuit-level computation that drives pattern discrimination behavior.

3.
NPJ Vaccines ; 7(1): 160, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496417

RESUMO

A phase 1 clinical trial to test the immunogenicity of a chimeric group 1 HA (cHA) universal influenza virus vaccine targeting the conserved stalk domain of the hemagglutinin of influenza viruses was carried out. Vaccination with adjuvanted-inactivated vaccines induced high anti-stalk antibody titers. We sought to identify gene expression signatures that correlate with such induction. Messenger-RNA sequencing in whole blood was performed on the peripheral blood of 53 vaccinees. We generated longitudinal data on the peripheral blood of 53 volunteers, at early (days 3 and 7) and late (28 days) time points after priming and boosting with cHAs. Differentially expressed gene analysis showed no differences between placebo and live-attenuated vaccine groups. However, an upregulation of genes involved in innate immune responses and type I interferon signaling was found at day 3 after vaccination with inactivated adjuvanted formulations. Cell type deconvolution analysis revealed a significant enrichment for monocyte markers and different subsets of dendritic cells as mediators for optimal B cell responses and significant increase of anti-stalk antibodies in sera. A significant upregulation of immunoglobulin-related genes was only observed after administration of adjuvanted vaccines (either as primer or booster) with specific induction of anti-stalk IGVH1-69. This approach informed of specific immune signatures that correlate with robust anti-stalk antibody responses, while also helping to understand the regulation of gene expression induced by cHA proteins under different vaccine regimens.

4.
Nat Med ; 27(1): 106-114, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288923

RESUMO

Seasonal influenza viruses constantly change through antigenic drift and the emergence of pandemic influenza viruses through antigenic shift is unpredictable. Conventional influenza virus vaccines induce strain-specific neutralizing antibodies against the variable immunodominant globular head domain of the viral hemagglutinin protein. This necessitates frequent re-formulation of vaccines and handicaps pandemic preparedness. In this completed, observer-blind, randomized, placebo-controlled phase I trial (NCT03300050), safety and immunogenicity of chimeric hemagglutinin-based vaccines were tested in healthy, 18-39-year-old US adults. The study aimed to test the safety and ability of the vaccines to elicit broadly cross-reactive antibodies against the hemagglutinin stalk domain. Participants were enrolled into five groups to receive vaccinations with live-attenuated followed by AS03-adjuvanted inactivated vaccine (n = 20), live-attenuated followed by inactivated vaccine (n = 15), twice AS03-adjuvanted inactivated vaccine (n = 16) or placebo (n = 5, intranasal followed by intramuscular; n = 10, twice intramuscular) 3 months apart. Vaccination was found to be safe and induced a broad, strong, durable and functional immune response targeting the conserved, immunosubdominant stalk of the hemagglutinin. The results suggest that chimeric hemagglutinins have the potential to be developed as universal vaccines that protect broadly against influenza viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Adolescente , Adulto , Anticorpos Antivirais/biossíntese , Humanos , Vacinas contra Influenza/efeitos adversos , Placebos , Adulto Jovem
5.
J Neurochem ; 110(5): 1469-78, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19549072

RESUMO

Stimulation of histamine H(3) receptors (H(3)R) activates G(i/o)-proteins that inhibit adenylyl cyclase and triggers MAPK and phospholipase A(2). In a previous study, we showed that H(3)R-mediated phosphorylation of Akt at Ser473 occurs in primary cultures of rat cortical neurons, but neither the downstream targets nor the function of such activation were explored. In this report we address these questions. Western blotting experiments showed that H(3)R-mediated activation of Akt in cultured rat cortical neurons was inhibited by LY 294004 and U0126, suggesting that it depends on phosphoinositide-3-kinase and mitogen-activated protein kinase kinase. H(3)R activation phosphorylated, hence inactivated, the Akt downstream effector glycogen synthase kinase-3beta, increased the expression of the antiapoptotic protein Bcl-2 and protected cultured rat and mouse cortical neurons from neurotoxic insults in a dose-dependent manner. All these effects were inhibited by the H(3)R antagonist inverse/agonist thioperamide. Mouse cortical cells expressed H(3)R as revealed by immunostaining experiments, and stimulation of H(3)R phoshorylated Akt and decreased caspase 3 activity. Hence, we uncovered a yet unexplored action of the H(3)R that may help understand the impact of H(3)R signaling in the CNS.


Assuntos
Córtex Cerebral/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Histamínicos H3/metabolismo , Transdução de Sinais/fisiologia , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Doenças do Sistema Nervoso Central/enzimologia , Doenças do Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/prevenção & controle , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Glicogênio Sintase Quinase 3 beta , Agonistas dos Receptores Histamínicos/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
6.
Mol Oncol ; 13(8): 1725-1743, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31116490

RESUMO

The ability to predict responsiveness to drugs in individual patients is limited. We hypothesized that integrating molecular information from databases would yield predictions that could be experimentally tested to develop transcriptomic signatures for specific drugs. We analyzed lung adenocarcinoma patient data from The Cancer Genome Atlas and identified a subset of patients in which xanthine dehydrogenase (XDH) expression correlated with decreased survival. We tested allopurinol, an FDA-approved drug that inhibits XDH, on human non-small-cell lung cancer (NSCLC) cell lines obtained from the Broad Institute Cancer Cell Line Encyclopedia and identified sensitive and resistant cell lines. We utilized the transcriptomic profiles of these cell lines to identify six-gene signatures for allopurinol-sensitive and allopurinol-resistant cell lines. Transcriptomic networks identified JAK2 as an additional target in allopurinol-resistant lines. Treatment of resistant cell lines with allopurinol and CEP-33779 (a JAK2 inhibitor) resulted in cell death. The effectiveness of allopurinol alone or allopurinol and CEP-33779 was verified in vivo using tumor formation in NCR-nude mice. We utilized the six-gene signatures to predict five additional allopurinol-sensitive NSCLC cell lines and four allopurinol-resistant cell lines susceptible to combination therapy. We searched the transcriptomic data from a library of patient-derived NSCLC tumors from the Jackson Laboratory to identify tumors that would be predicted to be sensitive to allopurinol or allopurinol + CEP-33779 treatment. Patient-derived tumors showed the predicted drug sensitivity in vivo. These data indicate that we can use integrated molecular information from cancer databases to predict drug responsiveness in individual patients and thus enable precision medicine.


Assuntos
Alopurinol/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Genômica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Análise de Sistemas , Alopurinol/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Triazóis/farmacologia , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Commun ; 10(1): 3756, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434897

RESUMO

Under physiological conditions, strength and persistence of memory must be regulated in order to produce behavioral flexibility. In fact, impairments in memory flexibility are associated with pathologies such as post-traumatic stress disorder or autism; however, the underlying mechanisms that enable memory flexibility are still poorly understood. Here, we identify transcriptional repressor Wilm's Tumor 1 (WT1) as a critical synaptic plasticity regulator that decreases memory strength, promoting memory flexibility. WT1 is activated in the hippocampus following induction of long-term potentiation (LTP) or learning. WT1 knockdown enhances CA1 neuronal excitability, LTP and long-term memory whereas its overexpression weakens memory retention. Moreover, forebrain WT1-deficient mice show deficits in both reversal, sequential learning tasks and contextual fear extinction, exhibiting impaired memory flexibility. We conclude that WT1 limits memory strength or promotes memory weakening, thus enabling memory flexibility, a process that is critical for learning from new experiences.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Proteínas Repressoras/metabolismo , Animais , Comportamento Animal/fisiologia , Região CA1 Hipocampal/metabolismo , Medo/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Proteínas WT1
8.
Neurobiol Learn Mem ; 90(4): 604-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18691662

RESUMO

The roles of the basolateral amygdala and nucleus basalis magnocellularis in fear conditioning reconsolidation were investigated by means of tetrodotoxin bilateral inactivation performed 96 h after conditioning, immediately after reactivation training. Footshocks of 1.2 mA intensity were employed to induce the generalization phenomenon. Basolateral amygdala inactivation disrupts the contextual fear response and its generalization but not acoustic CS trace retention, when measured 72 and 96 h after tetrodotoxin administration. Nucleus basalis magnocellularis functional inactivation does not affect memory post-reactivation phase of any of the three conditioned fear responses. The present findings show a differential role of the two structures in fear memory reconsolidation and can be a starting point for future investigation of the neural circuits subserving generalization.


Assuntos
Tonsila do Cerebelo/fisiologia , Núcleo Basal de Meynert/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Estimulação Acústica , Amnésia , Análise de Variância , Animais , Mapeamento Encefálico , Masculino , Memória/fisiologia , Atividade Motora , Ratos , Ratos Wistar
9.
Learn Mem ; 14(12): 855-60, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18086829

RESUMO

The nucleus basalis magnocellularis (NBM) is known to be involved in the memorization of several conditioned responses. To investigate the role of the NBM in fear conditioning memorization, this neural site was subjected to fully reversible tetrodotoxin (TTX) inactivation during consolidation in adult male Wistar rats that had undergone fear training to acoustic conditioned stimulus (CS) and context. TTX was stereotaxically administered to different groups of rats at increasing intervals after the acquisition session. Memory was assessed as the conditioned freezing duration measured during retention testing, always performed 72 and 96 h after TTX administration. In this way, there was no interference with normal NBM function during either acquisition or retrieval phases, allowing any amnesic effect to be due only to consolidation disruption. The results show that for contextual fear response memory consolidation, NBM functional integrity is necessary up to 24 h post-acquisition. On the other hand, NBM functional integrity was shown to be necessary for memory consolidation of the acoustic CS fear response only immediately after acquisition and not 24-h post-acquisition. The present findings help to elucidate the role of the NBM in memory consolidation and better define the neural circuits involved in fear memories.


Assuntos
Núcleo Basal de Meynert/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Memória/fisiologia , Estimulação Acústica , Anestésicos Locais/farmacologia , Animais , Núcleo Basal de Meynert/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Microinjeções , Ratos , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Tetrodotoxina/farmacologia
10.
Endocrinology ; 146(3): 1293-300, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15591146

RESUMO

The aim of this study was to better understand the role of the endothelin-1 (ET-1) system in the process of controlling the corpora lutea (CL) life span in rabbits. ET-1 (10 microg iv) administration at d 9 and 12 of pseudopregnancy induced a functional luteolysis within 24 h of injection, but it was ineffective at both d 4 and 6. Pretreatments with Bosentan, a dual ET(A)/ET(B) receptor antagonist, or cyclooxygenase (COX) inhibitor blocked the luteolytic action of ET-1 but not that induced by prostaglandin F2alpha (PGF2alpha). In CL cultured in vitro, ET-1 increased (P

Assuntos
Endotelina-1/fisiologia , Prenhez/fisiologia , Animais , Western Blotting , Bosentana , Corpo Lúteo/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Primers do DNA/química , Dinoprosta/metabolismo , Endotelina-1/metabolismo , Feminino , Imuno-Histoquímica , Óxido Nítrico Sintase/metabolismo , Gravidez , Progesterona/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Sulfonamidas/farmacologia , Fatores de Tempo
11.
Neurobiol Learn Mem ; 87(1): 133-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16978887

RESUMO

The substantia nigra (SN) is known to be involved in the memorization of several conditioned responses. To investigate the role of the SN in fear conditioning consolidation this neural site was subjected to fully reversible tetrodotoxin (TTX) inactivation during consolidation in adult male Wistar rats which had undergone fear training to acoustic CS and context. TTX was stereotaxically administered to different groups of rats at increasing intervals after the acquisition session. Memory was assessed as conditioned freezing duration measured during retention testing, always performed 72 and 96 h after TTX administration. In this way there was no interference with normal SN function during either acquisition or retrieval phases, so that any amnesic effect could be due only to consolidation disruption. The results show that SN functional integrity is necessary for contextual fear response consolidation up to the 24-h after-acquisition delay. On the contrary SN functional integrity was shown not to be necessary for the consolidation of acoustic CS fear responses. The present findings help to elucidate the role of the SN in memory consolidation and better define the neural circuits involved in fear memories.


Assuntos
Aprendizagem por Associação/fisiologia , Aprendizagem da Esquiva/fisiologia , Condicionamento Clássico/fisiologia , Memória/fisiologia , Substância Negra/fisiologia , Análise de Variância , Animais , Dopamina/fisiologia , Medo , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Wistar , Estatísticas não Paramétricas
12.
J Neurochem ; 103(1): 248-58, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17623045

RESUMO

Drugs targeting the histamine H(3) receptor (H(3)R) are suggested to be beneficial for the treatment of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. The H(3)R activates G(i/o)-proteins to inhibit adenylyl cyclase activity and modulates phospholipase A(2) and MAPK activity. Herein we show that, in transfected SK-N-MC cells, the H(3)R modulates the activity of the Akt/Glycogen synthase kinase 3beta (GSK-3beta) axis both in a constitutive and agonist-dependent fashion. H(3)R stimulation with the H(3)R agonist immepip induces the phosphorylation of both Ser473 and Thr308 on Akt, a serine/threonine kinase that is important for neuronal development and function. The H(3)R-mediated activation of Akt can be inhibited by the H(3)R inverse agonist thioperamide, and by Wortmannin, LY294002 and PTX, suggesting the observed Akt activation occurs via a G(i/o)-mediated activation of phosphoinositide-3-kinase. H(3)R activation also results in the phosphorylation of Ser9 on GSK-3beta, which acts downstream of Akt and has a prominent role in brain function. In addition, we show the H(3)R-mediated phosphorylation of Akt at Ser473 to occur in primary rat cortical neurons and in rat brain slices. The discovery of this signaling property of the H(3)R adds new understanding to the roles of histamine and the H(3)R in brain function and pathology.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Histamínicos H3/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Corpo Estriado/metabolismo , Receptores ErbB/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Neuroblastoma , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores Histamínicos H3/genética , Quinases da Família src/metabolismo
13.
Learn Mem ; 13(4): 426-30, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16882859

RESUMO

Consolidation refers to item stabilization in long-term memory. Retrieval renders a consolidated memory sensitive, and a "reconsolidation" process has been hypothesized to keep the original memory persistent. Some authors could not detect this phenomenon. Here we show that retrieved contextual fear memory is vulnerable to amnesic treatments and that the amygdala is critically involved. Cholinergic and histaminergic systems seem to modulate only consolidation, whereas cannabinoids are involved in both consolidation and reactivation. The lability of retrieved memory affords opportunities to treat disorders such as phobias, post-traumatic stress, or chronic pain, and these results help searching for appropriate therapeutic targets.


Assuntos
Tonsila do Cerebelo/fisiologia , Memória/fisiologia , Neurotransmissores/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Medo , Masculino , Piperidinas/farmacologia , Ratos , Ratos Wistar , Escopolamina/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA