RESUMO
The International Society for Computational Biology, ISCB, organizes the largest event in the field of computational biology and bioinformatics, namely the annual international conference on Intelligent Systems for Molecular Biology, the ISMB. This year at ISMB 2012 in Long Beach, ISCB celebrated the 20th anniversary of its flagship meeting. ISCB is a young, lean and efficient society that aspires to make a significant impact with only limited resources. Many constraints make the choice of venues for ISMB a tough challenge. Here, we describe those challenges and invite the contribution of ideas for solutions.
Assuntos
Biologia Computacional , Congressos como Assunto/organização & administração , Biologia MolecularRESUMO
BACKGROUND: The disease and phenotype track was designed to evaluate the relative performance of ontology matching systems that generate mappings between source ontologies. Disease and phenotype ontologies are important for applications such as data mining, data integration and knowledge management to support translational science in drug discovery and understanding the genetics of disease. RESULTS: Eleven systems (out of 21 OAEI participating systems) were able to cope with at least one of the tasks in the Disease and Phenotype track. AML, FCA-Map, LogMap(Bio) and PhenoMF systems produced the top results for ontology matching in comparison to consensus alignments. The results against manually curated mappings proved to be more difficult most likely because these mapping sets comprised mostly subsumption relationships rather than equivalence. Manual assessment of unique equivalence mappings showed that AML, LogMap(Bio) and PhenoMF systems have the highest precision results. CONCLUSIONS: Four systems gave the highest performance for matching disease and phenotype ontologies. These systems coped well with the detection of equivalence matches, but struggled to detect semantic similarity. This deserves more attention in the future development of ontology matching systems. The findings of this evaluation show that such systems could help to automate equivalence matching in the workflow of curators, who maintain ontology mapping services in numerous domains such as disease and phenotype.
Assuntos
Ontologias Biológicas , Doença , Fenótipo , Consenso , HumanosRESUMO
This message is a response from the ISCB in light of the recent the New England Journal of Medicine (NEJM) editorial around data sharing.
RESUMO
BACKGROUND: Meaningful exchange of microarray data is currently difficult because it is rare that published data provide sufficient information depth or are even in the same format from one publication to another. Only when data can be easily exchanged will the entire biological community be able to derive the full benefit from such microarray studies. RESULTS: To this end we have developed three key ingredients towards standardizing the storage and exchange of microarray data. First, we have created a minimal information for the annotation of a microarray experiment (MIAME)-compliant conceptualization of microarray experiments modeled using the unified modeling language (UML) named MAGE-OM (microarray gene expression object model). Second, we have translated MAGE-OM into an XML-based data format, MAGE-ML, to facilitate the exchange of data. Third, some of us are now using MAGE (or its progenitors) in data production settings. Finally, we have developed a freely available software tool kit (MAGE-STK) that eases the integration of MAGE-ML into end users' systems. CONCLUSIONS: MAGE will help microarray data producers and users to exchange information by providing a common platform for data exchange, and MAGE-STK will make the adoption of MAGE easier.