Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Malar J ; 13: 434, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25407998

RESUMO

BACKGROUND: Octopamine receptors (OARs) perform key functions in the biological pathways of primarily invertebrates, making this class of G-protein coupled receptors (GPCRs) a potentially good target for insecticides. However, the lack of structural and experimental data for this insect-essential GPCR family has promoted the development of homology models that are good representations of their biological equivalents for in silico screening of small molecules. METHODS: Two Anopheles gambiae OARs were cloned, analysed and functionally characterized using a heterologous cell reporter system. Four antagonist- and four agonist-binding homology models were generated and virtually screened by docking against compounds obtained from the ZINC database. Resulting compounds from the virtual screen were tested experimentally using an in vitro reporter assay and in a mosquito larvicide bioassay. RESULTS: Six An. gambiae OAR/tyramine receptor genes were identified. Phylogenetic analysis revealed that the OAR (AGAP000045) that encodes two open reading frames is an α-adrenergic-like receptor. Both splice variants signal through cAMP and calcium. Mutagenesis analysis revealed that D100 in the TM3 region and S206 and S210 in the TM5 region are important to the activation of the GPCR. Some 2,150 compounds from the virtual screen were structurally analysed and 70 compounds were experimentally tested against AgOAR45B expressed in the GloResponse™CRE-luc2P HEK293 reporter cell line, revealing 21 antagonists, 17 weak antagonists, 2 agonists, and 5 weak agonists. CONCLUSION: Reported here is the functional characterization of two An. gambiae OARs and the discovery of new OAR agonists and antagonists based on virtual screening and molecular dynamics simulations. Four compounds were identified that had activity in a mosquito larva bioassay, three of which are imidazole derivatives. This combined computational and experimental approach is appropriate for the discovery of new and effective insecticides.


Assuntos
Anopheles/efeitos dos fármacos , Descoberta de Drogas/métodos , Inseticidas/farmacologia , Receptores de Amina Biogênica/agonistas , Receptores de Amina Biogênica/antagonistas & inibidores , Animais , Anopheles/genética , Anopheles/fisiologia , Bioensaio , Clonagem Molecular , Biologia Computacional/métodos , Feminino , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Larva/fisiologia , Masculino , Receptores de Amina Biogênica/genética , Análise de Sobrevida
2.
Bioorg Med Chem Lett ; 24(15): 3493-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24909079

RESUMO

A set of 5,6-fused bicyclic heteroaromatic scaffolds were investigated for their in vitro anti-tubercular activity versus replicating and non-replicating strains of Mycobacterium tuberculosis (Mtb) in an attempt to find an alternative scaffold to the imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidines that were previously shown to have potent activity against replicating and drug resistant Mtb. The five new bicyclic heteroaromatic scaffolds explored in this study include a 2,6-dimethylimidazo[1,2-b]pyridazine-3-carboxamide (7), a 2,6-dimethyl-1H-indole-3-carboxamide (8), a 6-methyl-1H-indazole-3-carboxamide (9), a 7-methyl-[1,2,4]triazolo[4,3-a]pyridine-3-carboxamide (10), and a 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-carboxamide (11). Additionally, imidazo[1,2-a]pyridines isomers (2 and 12) and a homologous imidazo[1,2-a]pyrimidine isomer (6) were prepared and compared. Compounds 2 and 6 were found to be the most potent against H37Rv Mtb (MIC's of 0.1 µM and 1.3 µM) and were inactive (MIC >128 µM) against Staphylococcus aureus, Escherichia coli and Candida albicans. Against other non-tubercular mycobacteria strains, compounds 2 and 6 had activity against Mycobacterium avium (16 and 122 µM, respectively), Mycobacterium kansasii (4 and 19 µM, respectively), Mycobacterium bovis BCG (1 and 8 µM, respectively) while all the other scaffolds were inactive (>128 µM).


Assuntos
Antituberculosos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Compostos Heterocíclicos/farmacologia , Hidrocarbonetos Aromáticos/farmacologia , Imidazóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/química , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Hidrocarbonetos Aromáticos/síntese química , Hidrocarbonetos Aromáticos/química , Imidazóis/síntese química , Imidazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 20(7): 2214-20, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22391032

RESUMO

Tuberculosis (TB) is a devastating disease resulting in a death every 20s. Thus, new drugs are urgently needed. Herein we report ten classes of compounds-oxazoline, oxazole, thiazoline, thiazole, pyrazole, pyridine, isoxazole, imidazo[1,2-a]pyridine, imidazo[1,2-a]pyrimidine and imidazo[1,2-c]pyrimidine-which have good (micromolar) to excellent (sub-micromolar) antitubercular potency. The 5,6-fused heteroaromatic compounds were the most potent with MIC's as low as <0.195 µM (9 and 11). Overall, the imidazo[1,2-a]pyridine class was determined to be most promising, with potency similar to isoniazid and PA-824 against replicating Mtb H(37)Rv, clinically relevant drug sensitive, multi- and extensively resistant Mtb strains as well as having good in vitro metabolic stability.


Assuntos
Antituberculosos/química , Oxazóis/química , Piridinas/química , Tiazóis/química , Antituberculosos/síntese química , Antituberculosos/farmacologia , Isomerismo , Isoxazóis/síntese química , Isoxazóis/química , Isoxazóis/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazóis/síntese química , Oxazóis/farmacologia , Piridinas/síntese química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/farmacologia
4.
ACS Med Chem Lett ; 4(7): 675-679, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23930153

RESUMO

A set of fourteen imidazo[1,2-a]pyridine-3-carboxamides was synthesized and screened against Mycobacterium tuberculosis H37Rv. The minimum inhibitory concentrations of twelve of these agents were ≤ 1 µM against replicating bacteria and five compounds (9, 12, 16, 17 and 18) had MIC values ≤ 0.006 µM. Compounds 13 and 18 were screened against a panel of MDR and XDR drug resistant clinical Mtb strains with the potency of 18 surpassing that of clinical candidate PA-824 by nearly 10 fold. The in vivo pharmacokinetics of compounds 13 and 18 were evaluated in male mice by oral (PO) and intravenous (IV) routes. These results indicate that readily synthesized imidazo[1,2-a]pyridine-3-carboxamides are an exciting new class of potent, selective anti-TB agents that merit additional development opportunities.

5.
ACS Med Chem Lett ; 2(6): 466-470, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21691438

RESUMO

A set of nine 2,7-dimethylimidazo[1,2-a]pyridine-3-carboxamides and one 2,6-dimethylimidazo[1,2-a]pyrimidine-3-carboxamide were synthesized. The compounds were evaluated for their in vitro anti-tuberculosis activity versus replicating, non-replicating, multi- and extensive drug resistant Mtb strains. The MIC(90) values of seven of these agents were ≤ 1 µM against the various tuberculosis strains tested. A representative compound of this class (1) was screened against seven non-tubercular strains as well as other non-mycobacteria organisms and demonstrated remarkable microbe selectivity. A transcriptional profiling experiment of Mtb treated with compound 1 was performed to give a preliminary indication of the mode of action. Lastly, the in vivo ADME properties of compounds 1, 3, 4, and 6 were assessed. The 2,7-dimethylimidazo[1,2-a]pyridine-3-carboxamides are a drug-like and synthetically accessible class of anti-TB agents that have excellent selective potency against multi- and extensive drug resistant TB and encouraging pharmacokinetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA