Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2219385121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701120

RESUMO

Odd viscosity couples stress to strain rate in a dissipationless way. It has been studied in plasmas under magnetic fields, superfluid [Formula: see text], quantum-Hall fluids, and recently in the context of chiral active matter. In most of these studies, odd terms in the viscosity obey Onsager reciprocal relations. Although this is expected in equilibrium systems, it is not obvious that Onsager relations hold in active materials. By directly coarse-graining the kinetic energy and independently using both the Poisson-bracket formalism and a kinetic theory derivation, we find that the appearance of a nonvanishing angular momentum density, which is a hallmark of chiral active materials, necessarily breaks Onsager reciprocal relations. This leads to a non-Hermitian dynamical matrix for the total hydrodynamic momentum and to the appearance of odd viscosity and other nondissipative contributions to the viscosity. Furthermore, by accounting for both the angular momentum density and interactions that lead to odd viscosity, we find regions in the parameter space in which 3D odd mechanical waves propagate and regions in which they are mechanically unstable. The lines separating these regions are continuous lines of exceptional points, suggesting a possible nonreciprocal phase transition.

2.
Phys Rev Lett ; 133(2): 028201, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39073948

RESUMO

Strain-controlled criticality governs the elasticity of jamming and fiber networks. While the upper critical dimension of jamming is believed to be d_{u}=2, non-mean-field exponents are observed in numerical studies of 2D and 3D fiber networks. The origins of this remains unclear. In this study we propose a minimal mean-field model for strain-controlled criticality of fiber networks. We then extend this to a phenomenological field theory, in which non-mean-field behavior emerges as a result of the disorder in the network structure. We predict that the upper critical dimension for such systems is d_{u}=4 using a Gaussian approximation. Moreover, we identify an order parameter for the phase transition, which has been lacking for fiber networks to date.

3.
Phys Rev Lett ; 130(8): 088101, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898114

RESUMO

Networks of semiflexible or stiff polymers such as most biopolymers are known to deform inhomogeneously when sheared. The effects of such nonaffine deformation have been shown to be much stronger than for flexible polymers. To date, our understanding of nonaffinity in such systems is limited to simulations or specific 2D models of athermal fibers. Here, we present an effective medium theory for nonaffine deformation of semiflexible polymer and fiber networks, which is general to both 2D and 3D and in both thermal and athermal limits. The predictions of this model are in good agreement with both prior computational and experimental results for linear elasticity. Moreover, the framework we introduce can be extended to address nonlinear elasticity and network dynamics.

4.
Soft Matter ; 19(42): 8124-8135, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846933

RESUMO

Networks of stiff fibers govern the elasticity of biological structures such as the extracellular matrix of collagen. These networks are known to stiffen nonlinearly under shear or extensional strain. Recently, it has been shown that such stiffening is governed by a strain-controlled athermal but critical phase transition, from a floppy phase below the critical strain to a rigid phase above the critical strain. While this phase transition has been extensively studied numerically and experimentally, a complete analytical theory for this transition remains elusive. Here, we present an effective medium theory (EMT) for this mechanical phase transition of fiber networks. We extend a previous EMT appropriate for linear elasticity to incorporate nonlinear effects via an anharmonic Hamiltonian. The mean-field predictions of this theory, including the critical exponents, scaling relations and non-affine fluctuations qualitatively agree with previous experimental and numerical results.

5.
Entropy (Basel) ; 24(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35205548

RESUMO

Many complex fluids can be described by continuum hydrodynamic field equations, to which noise must be added in order to capture thermal fluctuations. In almost all cases, the resulting coarse-grained stochastic partial differential equations carry a short-scale cutoff, which is also reflected in numerical discretisation schemes. We draw together our recent findings concerning the construction of such schemes and the interpretation of their continuum limits, focusing, for simplicity, on models with a purely diffusive scalar field, such as 'Model B' which describes phase separation in binary fluid mixtures. We address the requirement that the steady-state entropy production rate (EPR) must vanish for any stochastic hydrodynamic model in a thermal equilibrium. Only if this is achieved can the given discretisation scheme be relied upon to correctly calculate the nonvanishing EPR for 'active field theories' in which new terms are deliberately added to the fluctuating hydrodynamic equations that break detailed balance. To compute the correct probabilities of forward and time-reversed paths (whose ratio determines the EPR), we must make a careful treatment of so-called 'spurious drift' and other closely related terms that depend on the discretisation scheme. We show that such subtleties can arise not only in the temporal discretisation (as is well documented for stochastic ODEs with multiplicative noise) but also from spatial discretisation, even when noise is additive, as most active field theories assume. We then review how such noise can become multiplicative via off-diagonal couplings to additional fields that thermodynamically encode the underlying chemical processes responsible for activity. In this case, the spurious drift terms need careful accounting, not just to evaluate correctly the EPR but also to numerically implement the Langevin dynamics itself.

6.
Phys Rev Lett ; 127(4): 048001, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355935

RESUMO

In common fluids, viscosity is associated with dissipation. However, when time-reversal symmetry is broken a new type of nondissipative "viscosity" emerges. Recent theories and experiments on classical 2D systems with active spinning particles have heightened interest in "odd viscosity," but a microscopic theory for it in active materials is still absent. Here, we present such first-principles microscopic Hamiltonian theory, valid for both 2D and 3D, showing that odd viscosity is present in any system, even at zero temperature, with globally or locally aligned spinning components. Our work substantially extends the applicability of odd viscosity into 3D fluids, and specifically to internally driven active materials, such as living matter (e.g., actomyosin gels). We find intriguing 3D effects of odd viscosity such as propagation of anisotropic bulk shear waves and breakdown of Bernoulli's principle.

7.
Phys Rev Lett ; 125(20): 208101, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258614

RESUMO

Animal cells form contractile structures to promote various functions, from cell motility to cell division. Force generation in these structures is often due to molecular motors such as myosin that require polar substrates for their function. Here, we propose a motor-free mechanism that can generate contraction in biopolymer networks without the need for polarity. This mechanism is based on active binding and unbinding of cross-linkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers. We find that these two ingredients can generate steady state contraction via a nonthermal, ratchetlike process. We calculate the resulting force-velocity relation using both coarse-grained and microscopic models.


Assuntos
Modelos Biológicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Animais , Fenômenos Biomecânicos , Fenômenos Fisiológicos Celulares , Elasticidade , Fenômenos Mecânicos
8.
Phys Rev Lett ; 122(8): 088004, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932571

RESUMO

The hydrodynamic theory of polar liquid crystals is widely used to describe biological active fluids as well as passive molecular materials. Depending on the "shear-alignment parameter", in passive or weakly active polar fluids under external shear, the polar order parameter p is either inclined to the flow at a fixed (Leslie) angle, or rotates continuously. Here, we study the role of an additional "shear-elongation parameter" that has been neglected in the recent literature and causes |p| to change under flow. We show that this effect can give rise to a shear-induced first-order phase transition from isotropic to polar, and significantly change the rheological properties of both active and passive polar fluids.

9.
Langmuir ; 34(44): 13322-13332, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30266068

RESUMO

Charged colloidal monolayers at the interface between water and air (or oil) are used in a large number of chemical, physical, and biological applications. Although considerable experimental and theoretical effort has been devoted in the past few decades to the investigation of such monolayers, some of their fundamental properties are not yet fully understood. In this article, we model charged colloidal monolayers as a continuum layer of finite thickness, with a separate charge distribution on the water and air sides. The electrostatic surface free energy and surface pressure are calculated via the charging method and within the Debye-Hückel approximation. We obtain the dependence of surface pressure on several system parameters: the monolayer thickness, its distinct dielectric permittivity, and the ionic strength of the aqueous subphase. The surface pressure scaling with the area per particle, a, is found to be between a-2 in the close-packing limit and a-5/2 in the loose-packing limit. In general, it is found that the surface pressure is strongly influenced by charges on the air side of the colloids. However, when the larger charge resides on the water side, a more subtle dependence on salt concentration emerges. This corrects a common assumption that the charges on the water side can always be neglected due to screening. Finally, using a single fit parameter, our theory is found to fit the experimental data well for strong- to intermediate-strength electrolytes. We postulate that an anomalous scaling of a-3/2, recently observed in low ionic concentrations, cannot be accounted for within a linear theory, and its explanation requires a fully nonlinear analysis.

10.
Soft Matter ; 14(29): 6058-6069, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29985507

RESUMO

We revisit the charge-regulation mechanism of macro-ions and apply it to mobile macro-ions in a bathing salt solution. In particular, we examine the effects of correlation between various adsorption/desorption sites and analyze the collective behavior in terms of the solution effective screening properties. We show that such a behavior can be quantified in terms of the charge asymmetry of the macro-ions, defined by their preference for a non-zero effective charge, and their donor/acceptor propensity for exchanging salt ions with the bathing solution. Asymmetric macro-ions tend to increase the screening, while symmetric macro-ions can in some cases decrease it. Macro-ions that are classified as donors display a rather regular behavior, while those that behave as acceptors exhibit an anomalous non-monotonic Debye length. The screening properties, in their turn, engender important modifications to the disjoining pressure between two charged surfaces. Our findings are in particular relevant for solutions of proteins, whose exposed amino acids can undergo charge dissociation/association processes to/from the bathing solution, and can be considered as a solution of charged regulated macro-ions, as analyzed here.

11.
J Chem Phys ; 149(5): 054504, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089391

RESUMO

The dielectric constant of ionic solutions is known to reduce with increasing ionic concentrations. However, the origin of this effect has not been thoroughly explored. In this paper, we study two such possible sources: long-range Coulombic correlations and solvent excluded-volume. Correlations originate from fluctuations of the electrostatic potential beyond the mean-field Poisson-Boltzmann theory, evaluated by employing a field-theoretical loop expansion of the free energy. The solvent excluded-volume, on the other hand, stems from the finite ion size, accounted for via a lattice-gas model. We show that both correlations and excluded volume are required in order to capture the important features of the dielectric behavior. For highly polar solvents, such as water, the dielectric constant is given by the product of the solvent volume fraction and a concentration-dependent susceptibility per volume fraction. The available solvent volume decreases as a function of ionic strength due the increasing volume fraction of ions. A similar decrease occurs for the susceptibility due to the correlations between the ions and solvent, reducing the dielectric response even further. Our predictions for the dielectric constant fit well with experiments for a wide range of concentrations for different salts in different temperatures, using a single fit parameter related to the ion size.

12.
Langmuir ; 33(1): 34-44, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27990824

RESUMO

We extend our previous study of surface tension of ionic solutions and apply it to acids (and salts) with strong ion-surface interactions, as described by a single adhesivity parameter for the ionic species interacting with the interface. We derive the appropriate nonlinear boundary condition with an effective surface charge due to the adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero loop (mean field) corresponds of the full nonlinear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension and the one-loop contribution gives a generalization of the Onsager-Samaras result. Adhesivity significantly affects both contributions to the surface tension, as can be seen from the dependence of surface tension on salt concentration for strongly absorbing ions. Comparison with available experimental data on a wide range of different acids and salts allows the fitting of the adhesivity parameter. In addition, it identifies the regime(s) where the hypotheses on which the theory is based are outside their range of validity.

13.
J Chem Phys ; 146(19): 194904, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28527430

RESUMO

Ionic solutions are often regarded as fully dissociated ions dispersed in a polar solvent. While this picture holds for dilute solutions, at higher ionic concentrations, oppositely charged ions can associate into dimers, referred to as Bjerrum pairs. We consider the formation of such pairs within the nonlinear Poisson-Boltzmann framework and investigate their effects on bulk and interfacial properties of electrolytes. Our findings show that pairs can reduce the magnitude of the dielectric decrement of ionic solutions as the ionic concentration increases. We describe the effect of pairs on the Debye screening length and relate our results to recent surface-force experiments. Furthermore, we show that Bjerrum pairs reduce the ionic concentration in bulk electrolyte and at the proximity of charged surfaces, while they enhance the attraction between oppositely charged surfaces.

14.
J Chem Phys ; 145(13): 134704, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27782437

RESUMO

We study, by incorporating short-range ion-surface interactions, ionic profiles of electrolyte solutions close to a non-charged interface between two dielectric media. In order to account for important correlation effects close to the interface, the ionic profiles are calculated beyond mean-field theory, using the loop expansion of the free energy. We show that how it is possible to overcome the well-known deficiency of the regular loop expansion close to the dielectric jump and treat the non-linear boundary conditions within the framework of field theory. The ionic profiles are obtained analytically to one-loop order in the free energy, and their dependence on different ion-surface interactions is investigated. The Gibbs adsorption isotherm as well as the ionic profiles is used to calculate the surface tension, in agreement with the reverse Hofmeister series. Consequently, from the experimentally measured surface tension, one can extract a single adhesivity parameter, which can be used within our model to quantitatively predict hard to measure ionic profiles.

15.
J Chem Phys ; 142(4): 044702, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25637998

RESUMO

We study the surface tension of ionic solutions at air/water and oil/water interfaces by using field-theoretical methods and including a finite proximal surface-region with ionic-specific interactions. The free energy is expanded to first-order in a loop expansion beyond the mean-field result. We calculate the excess surface tension and obtain analytical predictions that reunite the Onsager-Samaras pioneering result (which does not agree with experimental data), with the ionic specificity of the Hofmeister series. We derive analytically the surface-tension dependence on the ionic strength, ionic size, and ion-surface interaction, and show consequently that the Onsager-Samaras result is consistent with the one-loop correction beyond the mean-field result. Our theory fits well a wide range of salt concentrations for different monovalent ions using one fit parameter per electrolyte and reproduces the reverse Hofmeister series for anions at the air/water and oil/water interfaces.

16.
Phys Rev E ; 108(4-1): 044405, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978629

RESUMO

Contractility in animal cells is often generated by molecular motors such as myosin, which require polar substrates for their function. Motivated by recent experimental evidence of motor-independent contractility, we propose a robust motor-free mechanism that can generate contraction in biopolymer networks without the need for substrate polarity. We show that contractility is a natural consequence of active binding-unbinding of crosslinkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers. We have extended our earlier work to discuss the motor-free contraction of viscoelastic biopolymer networks. We calculate the resulting contractile velocity using a microscopic model and show that it can be reduced to a simple coarse-grained model under certain limits. Our model may provide an explanation of recent reports of motor-independent contractility in cells. Our results also suggest a mechanism for generating contractile forces in synthetic active materials.


Assuntos
Modelos Biológicos , Miosinas , Animais , Biopolímeros , Contração Muscular
18.
Phys Rev E ; 104(3-1): 034418, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654176

RESUMO

A long-standing puzzle in the rheology of living cells is the origin of the experimentally observed long-time stress relaxation. The mechanics of the cell is largely dictated by the cytoskeleton, which is a biopolymer network consisting of transient crosslinkers, allowing for stress relaxation over time. Moreover, these networks are internally stressed due to the presence of molecular motors. In this work we propose a theoretical model that uses a mode-dependent mobility to describe the stress relaxation of such prestressed transient networks. Our theoretical predictions agree favorably with experimental data of reconstituted cytoskeletal networks and may provide an explanation for the slow stress relaxation observed in cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA