Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31119129

RESUMO

In vitro quantification of the effect of mechanical loads on cells by live microscopy requires precise control of load and culture environment. Corresponding systems are often bulky, their setup and maintenance are time consuming, or the cell yield is low. Here, we show the design and initial testing of a new cell culture system that fits on standard light microscope stages. Based on the parallel plate principle, the system allows for live microscopy of cells exposed to flow-induced shear stress, features short setup time and requires little user interaction. An integrated feedback-controlled heater and a bubble trap enable long observation times. The key design feature is the possibility for quick exchange of the cultured cells. We present first test results that focus on verifying the robustness, biocompatibility, and ease of use of the device.

2.
J Plast Reconstr Aesthet Surg ; 69(8): 1141-50, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26966076

RESUMO

BACKGROUND: The application of acellular matrices, biomaterials, and polymeric scaffolds in reconstructive surgery facilitates postsurgical tissue remodeling and is increasingly used clinically in order to improve tissue healing and implant coverage. This study presents an in vivo investigation of the integration of the knitted, silk-derived surgical scaffold, SERI(®) with regard to angiogenesis and wound healing. METHODS: SERI(®) Surgical Scaffold was implanted into a full-thickness skin defect in male C57BL/6J mice (n = 45) via the dorsal skinfold chamber (DSC). Skin tissue samples were collected for histology on days 2, 5, 7, 10, 14, and 21 (n = 5 per time point) post implantation. Immunohistochemistry was performed for various angiogenic and inflammatory markers, as well as collagen deposition (CD31, VEGF, CD3, CD45, Desmin, and Sirius red). Vascular corrosion casting was used to assess the neovasculature within the silk and was visualized with scanning electron microscopy. RESULTS: We observed both early and late stages of inflammation during the healing process characterized by the infiltration of regenerating tissue by different subsets of leukocytes. Histological analysis displayed capillary-containing granulation tissue with full scaffold integration. In addition, collagen deposition within the scaffold and full skin defect was significantly increased over time. Qualitative analysis of the regenerated vasculature through corrosion casting and scanning electron microscopy revealed a complex, angiogenic network of capillaries originating from the wound bed. CONCLUSIONS: Based on these findings, SERI(®) displays the potential to be a promising resorbable bioengineered material for use in reconstructive surgery.


Assuntos
Regeneração Tecidual Guiada/instrumentação , Seda , Ferida Cirúrgica/cirurgia , Alicerces Teciduais , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Neovascularização Fisiológica , Ferida Cirúrgica/diagnóstico por imagem , Ferida Cirúrgica/etiologia , Cicatrização
3.
Integr Biol (Camb) ; 6(10): 988-98, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25183478

RESUMO

Fluorescence long-term imaging of cellular processes in three-dimensional cultures requires the control of media supply, temperature, and pH, as well as minimal photodamage. We describe a system based on a light sheet fluorescence microscope (LSFM), which is optimized for long-term, multi-position imaging of three-dimensional in-gel cell cultures. The system integrates a stable culture condition control system in the optical path of the light-sheet microscope. A further essential element is a biocompatible agarose container suitable for the LSFM, in which any cell type can be cultured in different gel matrices. The TC-LSFM allows studying any in vitro cultured cell type reacting to, dividing in, or migrating through a three-dimensional extracellular matrix (ECM) gel. For this reason we called it "tissue culture-LSFM" (TC-LSFM). The TC-LSFM system allows fast imaging at multiple locations within a millimeter-sized ECM gel. This increases the number of analyzed events and allows testing population effects. As an example, we show the maturation of a cyst of MDCK (canine kidney epithelial) cells over a period of three days. Moreover, we imaged, tracked, and analyzed MDCK cells during the first five days of cell aggregate formation and discovered a remarkable heterogeneity in cell cycle lengths and an interesting cell death pattern. Thus, TC-LSFM allows performing new long-term assays assessing cellular behavior in three-dimensional ECM-gel cultures. For example migration, invasion or differentiation in epithelial cell systems, stem cells, as well as cancer cells can be investigated.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Matriz Extracelular/fisiologia , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Animais , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Cães , Células Epiteliais/fisiologia , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/instrumentação , Estatísticas não Paramétricas
4.
Cytoskeleton (Hoboken) ; 67(4): 224-40, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20183868

RESUMO

Cell motility contributes to the formation of organs and tissues, into which multiple cells self-organize. However such mammalian cellular motilities are not characterized in a quantitative manner and the systemic consequences are thus unknown. A mathematical tool to decipher cell motility, accounting for changes in cell shape, within a three-dimensional (3D) cell system was missing. We report here such a tool, usable on segmented images reporting the outline of clusters (cells) and allowing the time-resolved 3D analysis of circular motility of these as parts of a system (cell aggregate). Our method can analyze circular motility in sub-cellular, cellular, multi-cellular, and also non-cellular systems for which time-resolved segmented cluster outlines are available. To exemplify, we characterized the circular motility of lumen-initiating MDCK cell aggregates, embedded in extracellular matrix. We show that the organization of the major surrounding matrix fibers was not significantly affected during this cohort rotation. Using our developed tool, we discovered two classes of circular motion, rotation and random walk, organized in three behavior patterns during lumen initiation. As rotational movements were more rapid than random walk and as both could continue during lumen initiation, we conclude that neither the class nor the rate of motion regulates lumen initiation. We thus reveal a high degree of plasticity during a developmentally critical cell polarization step, indicating that lumen initiation is a robust process. However, motility rates decreased with increasing cell number, previously shown to correlate with epithelial polarization, suggesting that migratory polarization is converted into epithelial polarization during aggregate development.


Assuntos
Simulação por Computador , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Imageamento Tridimensional , Animais , Agregação Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Cães , Matriz Extracelular/metabolismo , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA