Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Cytopathol ; 132(4): 214-223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37812603

RESUMO

BACKGROUND: Leptomeningeal metastases occur across multiple solid and lymphoid cancers, and patients typically undergo cytopathologic assessment of cerebrospinal fluid (CSF) in this setting. For patients diagnosed with metastatic cancer, the detection of actionable somatic mutations in CSF can provide clinically valuable information for treatment without the need for additional tissue collection. METHODS: The authors validated a targeted next-generation sequencing assay for the detection of somatic variants in cancer (OncoPanel) on cell-free DNA (cfDNA) isolated from archival CSF specimens in a cohort of 25 patients who had undergone molecular testing of a prior tumor specimen. RESULTS: CSF storage time and volume had no impact on cfDNA concentration or mean target coverage of the assay. Previously identified somatic variants in CSF cfDNA were detected in 88%, 50%, and 27% of specimens diagnosed cytologically as positive, suspicious/atypical, and negative for malignancy, respectively. Somatic variants were identified in 81% of CSF specimens from patients who had leptomeningeal enhancement on magnetic resonance imaging compared with 31% from patients without such enhancement. CONCLUSIONS: These data highlight the stability of cfDNA in CSF, which allows for cytopathologic evaluation before triage for next-generation sequencing assays. For a subset of cases in which clinical suspicion is high but cytologic or radiographic studies are inconclusive, the detection of pathogenic somatic variants in CSF cfDNA may aid in the diagnosis of leptomeningeal metastases.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Ácidos Nucleicos Livres/genética , Mutação , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
PLoS One ; 17(2): e0264201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35202431

RESUMO

Activating mutations in EGFR predict benefit from tyrosine kinase inhibitor therapy for patients with advanced non-small cell lung cancer. Directing patients to appropriate therapy depends on accurate and timely EGFR assessment in the molecular pathology laboratory. This article describes the analytical design, performance characteristics, and clinical implementation of an assay for the rapid detection of EGFR L858R and exon 19 deletion mutations. A droplet digital polymerase chain reaction (ddPCR) assay was implemented with probe hydrolysis-dependent signal detection. A mutation-specific probe was used to detect EGFR L858R. A loss of signal design was used to detect EGFR exon 19 deletion mutations. Analytical sensitivity was dependent on DNA input and was as low as 0.01% variant allele fraction for the EGFR L858R assay and 0.1% variant allele fraction for the EGFR exon 19 deletion assay. Correlation of 20 clinical specimens tested by ddPCR and next generation sequencing showed 100% concordance. ddPCR showed 53% clinical sensitivity in the detection of EGFR mutations in plasma cell-free DNA from patients with lung cancer. The median clinical turnaround time was 5 days for ddPCR compared to 13 days for next generation sequencing. The findings show that ddPCR is an accurate and rapid method for detecting EGFR mutations in patients with non-small cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Análise Mutacional de DNA/métodos , Neoplasias Pulmonares/genética , Reação em Cadeia da Polimerase/métodos , Receptores ErbB/genética , Humanos , Mutação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA