Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 33(6): 727-37, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19328066

RESUMO

The yeast Sac3:Cdc31:Sus1:Thp1 (TREX-2) complex facilitates the repositioning and association of actively transcribing genes with nuclear pores (NPCs)-"gene gating"-that is central to integrating transcription, processing, and mRNA nuclear export. We present here the crystal structure of Sus1 and Cdc31 bound to a central region of Sac3 (the CID domain) that is crucial for its function. Sac3(CID) forms a long, gently undulating alpha helix around which one Cdc31 and two Sus1 chains are wrapped. Sus1 has an articulated helical hairpin fold that facilitates its wrapping around Sac3. In vivo studies using engineered mutations that selectively disrupted binding of individual chains to Sac3 indicated that Sus1 and Cdc31 function synergistically to promote NPC association of TREX-2 and mRNA nuclear export. These data indicate Sac3(CID) provides a scaffold within TREX-2 to integrate interactions between protein complexes to facilitate the coupling of transcription and mRNA export during gene expression.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/química , Poro Nuclear/metabolismo , Proteínas Nucleares/química , Transporte de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Hibridização In Situ , Microscopia de Fluorescência , Dados de Sequência Molecular , Poro Nuclear/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Porinas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
2.
Biophys J ; 108(4): 918-927, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692596

RESUMO

The transport channel of nuclear pore complexes (NPCs) contains a high density of intrinsically disordered proteins that are rich in phenylalanine-glycine (FG)-repeat motifs (FG Nups). The FG Nups interact promiscuously with various nuclear transport receptors (NTRs), such as karyopherins (Kaps), that mediate the trafficking of nucleocytoplasmic cargoes while also generating a selectively permeable barrier against other macromolecules. Although the binding of NTRs to FG Nups increases molecular crowding in the NPC transport channel, it is unclear how this impacts FG Nup barrier function or the movement of other molecules, such as the Ran importer NTF2. Here, we use surface plasmon resonance to evaluate FG Nup conformation, binding equilibria, and interaction kinetics associated with the multivalent binding of NTF2 and karyopherinß1 (Kapß1) to Nsp1p molecular brushes. NTF2 and Kapß1 show different long- and short-lived binding characteristics that emerge from varying degrees of molecular retention and FG repeat binding avidity within the Nsp1p brush. Physiological concentrations of NTF2 produce a collapse of Nsp1p brushes, whereas Kapß1 binding generates brush extension. However, the presence of prebound Kapß1 inhibits Nsp1p brush collapse during NTF2 binding, which is dominated by weak, short-lived interactions that derive from steric hindrance and diminished avidity with Nsp1p. This suggests that binding promiscuity confers kinetic advantages to NTF2 by expediting its facilitated diffusion and reinforces the proposal that Kapß1 contributes to the integral barrier function of the NPC.


Assuntos
Núcleo Celular/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Animais , Humanos , Cinética , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Saccharomyces cerevisiae/química
3.
J Biol Chem ; 285(27): 20704-15, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20463024

RESUMO

Following transcription, mRNA is processed, packaged into messenger ribonucleoprotein (mRNP) particles, and transported through nuclear pores (NPCs) to the cytoplasm. At the NPC cytoplasmic face, Dbp5 mediates mRNP remodeling and mRNA export factor dissociation, releasing transcripts for translation. In Saccharomyces cerevisiae, the conserved poly(A) RNA-binding protein, Nab2, facilitates NPC targeting of transcripts and also modulates poly(A) tail length. Dbp5 removes Nab2 from mRNPs at the cytoplasmic face of the pore and, importantly, a Nab2 RNA-binding mutant suppresses the thermosensitive rat8-2 (dbp5) mutant. GFD1 is a multicopy suppressor of rat8-2 (dbp5), and Gfd1 interacts physically with both Dbp5 and the Nab2 N-terminal domain (Nab2-N). Here, we present a structural and functional analysis of the Gfd1/Nab2-N interaction. Crystallography, supported by solution NMR, shows that Gfd1 residues 126-150 form an alpha-helix when bound to Nab2-N. Engineered Nab2-N and Gfd1 mutants that inhibit this interaction in vitro were used to probe its function in vivo using the genetic interaction between GFD1 and NAB2. Although GFD1 is not essential for viability, its deletion severely impairs growth of rat8-2 (dbp5) cells. Moreover, although Gfd1 overexpression suppresses rat8-2 (dbp5), Gfd1 mutants that do not bind Nab2 only partially suppress rat8-2 (dbp5). Furthermore, rat8-2 (dbp5) cells that express nab2-Y34A, in which binding to Gfd1 is impaired, show a synthetic growth phenotype and nuclear accumulation of poly(A) RNA. These data support the importance of the Gfd1/Nab2 interaction for Dbp5 activity and provide further molecular details of the interactions that facilitate Dbp5-mediated mRNP remodeling in the terminal step of mRNA export.


Assuntos
Proteínas de Transporte/genética , Núcleo Celular/metabolismo , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Regulação Fúngica da Expressão Gênica , Immunoblotting , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas Nucleares/genética , Plasmídeos , Conformação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
4.
J Mol Biol ; 376(4): 1048-59, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18190927

RESUMO

Nuclear abundant poly(A) RNA-binding protein 2 (Nab2) is an essential yeast heterogeneous nuclear ribonucleoprotein that modulates both mRNA nuclear export and poly(A) tail length. The N-terminal domain of Nab2 (residues 1-97) mediates interactions with both the C-terminal globular domain of the nuclear pore-associated protein, myosin-like protein 1 (Mlp1), and the mRNA export factor, Gfd1. The solution and crystal structures of the Nab2 N-terminal domain show a primarily helical fold that is analogous to the PWI fold found in several other RNA-binding proteins. In contrast to other PWI-containing proteins, we find no evidence that the Nab2 N-terminal domain binds to nucleic acids. Instead, this domain appears to mediate protein:protein interactions that facilitate the nuclear export of mRNA. The Nab2 N-terminal domain has a distinctive hydrophobic patch centered on Phe73, consistent with this region of the surface being a protein:protein interaction site. Engineered mutations within this hydrophobic patch attenuate the interaction with the Mlp1 C-terminal domain but do not alter the interaction with Gfd1, indicating that this patch forms a crucial component of the interface between Nab2 and Mlp1.


Assuntos
Proteínas Nucleares/química , Proteínas de Transporte Nucleocitoplasmático/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sítios de Ligação , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fenilalanina , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Soluções
5.
J Antimicrob Chemother ; 51(4): 821-31, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12654735

RESUMO

Synthetic glutamine analogues such as N3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid (FMDP) inhibit purified glucosamine-6-phosphate synthase, an intracellular enzyme that is essential for microbial cell wall synthesis, but they are inactive against intact organisms because they cannot enter the cell. However, when the analogues are linked to a peptide they can be actively transported, and FMDP peptidomimetics show broad-spectrum antimicrobial activity. To characterize this process in more detail, the antibacterial activities of various synthetic peptidomimetics containing glutamine analogues have been determined against isogenic strains of Escherichia coli in which one or more of its three peptide transporters Dpp, Opp and Tpp have been mutated. In addition, their affinities for DppA and OppA, the binding-protein components of the transporters, have been measured. In general, antibacterial activities against the various transport mutants correlated with binding to DppA and OppA. Xaa-FMDP compounds have greater activities than FMDP-Xaa analogues. To explore structure-activity relationships for the peptidomimetics, molecular modelling was used to determine the conformational forms they adopt in solution. The relative bioactivities of the peptidomimetics correlated with the percentage of conformers that had backbone torsions matching those previously defined for the molecular recognition templates of the peptide transporters. However, the large size of the N-terminal residue in the FMDP-Xaa analogues appears to interfere with transport and thus to limit antibacterial activity. Overall, the results provide the structural rationale for the identification in silico of analogues with optimal bioactivities, which decreases the need for extensive chemical syntheses and testing.


Assuntos
Anti-Infecciosos/farmacologia , Glutamina/análogos & derivados , Glutamina/farmacologia , Pró-Fármacos/farmacologia , Anti-Infecciosos/síntese química , Ligação Competitiva/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Modelos Moleculares , Conformação Molecular , Mimetismo Molecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Pró-Fármacos/síntese química , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA