Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Biol ; 227(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38736357

RESUMO

Recent global declines in bee health have elevated the need for a more complete understanding of the cellular stress mechanisms employed by diverse bee species. We recently uncovered the biomarker lethal (2) essential for life [l(2)efl] genes as part of a shared transcriptional program in response to a number of cell stressors in the western honey bee (Apis mellifera). Here, we describe another shared stress-responsive gene, glycine N-methyltransferase (Gnmt), which is known as a key metabolic switch controlling cellular methylation reactions. We observed Gnmt induction by both abiotic and biotic stressors. We also found increased levels of the GNMT reaction product sarcosine in the midgut after stress, linking metabolic changes with the observed changes in gene regulation. Prior to this study, Gnmt upregulation had not been associated with cellular stress responses in other organisms. To determine whether this novel stress-responsive gene would behave similarly in other bee species, we first characterized the cellular response to endoplasmic reticulum (ER) stress in lab-reared adults of the solitary alfalfa leafcutting bee (Megachile rotundata) and compared this with age-matched honey bees. The novel stress gene Gnmt was induced in addition to a number of canonical gene targets induced in both bee species upon unfolded protein response (UPR) activation, suggesting that stress-induced regulation of cellular methylation reactions is a common feature of bees. Therefore, this study suggests that the honey bee can serve as an important model for bee biology more broadly, although studies on diverse bee species will be required to fully understand global declines in bee populations.


Assuntos
Glicina N-Metiltransferase , Animais , Abelhas/genética , Abelhas/fisiologia , Metilação , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Estresse do Retículo Endoplasmático , Estresse Fisiológico/genética , Regulação da Expressão Gênica , Transcrição Gênica , Especificidade da Espécie , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
2.
Microbiol Spectr ; 12(2): e0334923, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38179918

RESUMO

Microsporidia cause disease in many beneficial insects, including honey bees, yet few pathogen control tools are available for protecting these important organisms against infection. Some evidence suggests that microsporidia possess a reduced number of genes encoding DNA repair proteins. We hypothesized that microsporidia would thus be susceptible to treatment with DNA-damaging agents and tested this hypothesis using a novel, rapid method for achieving robust and homogenous experimental infection of large numbers of newly emerged honey bees with one of its microsporidia pathogens, Vairimorpha (Nosema) ceranae. In carrying out these experiments, we found this novel V. ceranae inoculation method to have similar efficacy as other traditional methods. We show that the DNA-damaging agent bleomycin reduces V. ceranae levels, with minimal but measurable effects on honey bee survival and increased expression of midgut cellular stress genes, including those encoding SHSP. Increased expression of UpdlC suggests the occurrence of epithelial regeneration, which may contribute to host resistance to bleomycin treatment. While bleomycin does reduce infection levels, host toxicity issues may preclude its use in the field. However, with further work, bleomycin may provide a useful tool in the research setting as a potential selection agent for genetic modification of microsporidia.IMPORTANCEMicrosporidia cause disease in many beneficial insects, yet there are few tools available for control in the field or laboratory. Based on the reported paucity of DNA repair enzymes found in microsporidia genomes, we hypothesized that these obligate intracellular parasites would be sensitive to DNA damage. In support of this, we observed that the well-characterized DNA damage agent bleomycin can reduce levels of the microsporidia Vairimorpha (Nosema) ceranae in experimental infections in honey bees. Observation of slightly reduced honey bee survival and evidence of sublethal toxicity likely preclude the use of bleomycin in the field. However, this work identifies bleomycin as a compound that merits further exploration for use in research laboratories as a potential selection agent for generating genetically modified microsporidia.


Assuntos
Microsporídios , Nosema , Abelhas , Animais , Nosema/genética , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA