Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Chemistry ; 29(3): e202203130, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250587

RESUMO

A novel iron-catalyzed borylation of propargylic acetates leading to allenylboronates has been developed. The method allows the preparation of a variety of di-, tri- and tetrasubstituted allenylboronates at room temperature with good functional group compatibility. Stereochemical studies show that an anti-SN 2' displacement of acetate by boron occurs; this also allows transfer of chirality to yield enantiomerically enriched allenylboronates. The synthetic utility of this protocol was further substantiated by transformations of the obtained allenylboronates including oxidation and propargylation.


Assuntos
Boro , Ferro , Catálise , Estereoisomerismo , Oxirredução
2.
Chemistry ; 28(44): e202201000, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35638139

RESUMO

In this paper, we present an unprecedented and general umpolung protocol that allows the functionalization of silyl enol ethers and of 1,3-dicarbonyl compounds with a large range of heteroatom nucleophiles, including carboxylic acids, alcohols, primary and secondary amines, azide, thiols, and also anionic carbamates derived from CO2 . The scope of the reaction also extends to carbon-based nucleophiles. The reaction relies on the use of 1-bromo-3,3-dimethyl-1,3-dihydro-1λ3 [d][1,2]iodaoxole, which provides a key α-brominated carbonyl intermediate. The reaction mechanism has been studied experimentally and by DFT, and we propose formation of an unusual enolonium intermediate with a halogen-bonded bromide.

3.
Chemistry ; 27(72): 18188-18200, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34672032

RESUMO

The functionalization of C-H bonds, ubiquitous in drugs and drug-like molecules, represents an important synthetic strategy with the potential to streamline the drug-discovery process. Late-stage aromatic C-N bond-forming reactions are highly desirable, but despite their significance, accessing aminated analogues through direct and selective amination of C-H bonds remains a challenging goal. The method presented herein enables the amination of a wide array of benzoic acids with high selectivity. The robustness of the system is manifested by the large number of functional groups tolerated, which allowed the amination of a diverse array of marketed drugs and drug-like molecules. Furthermore, the introduction of a synthetic handle enabled expeditious access to targeted drug-delivery conjugates, PROTACs, and probes for chemical biology. This rapid access to valuable analogues, combined with operational simplicity and applicability to high-throughput experimentation has the potential to aid and considerably accelerate drug discovery.


Assuntos
Irídio , Preparações Farmacêuticas , Aminação , Compostos de Anilina , Benzoatos , Catálise
4.
Chemistry ; 26(45): 10185-10190, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32449557

RESUMO

An iridium-catalyzed selective ortho-monoiodination of benzoic acids with two equivalent C-H bonds is presented. A wide range of electron-rich and electron-poor substrates undergo the reaction under mild conditions, with >20:1 mono/di selectivity. Importantly, the C-H iodination occurs selectively ortho to the carboxylic acid moiety in substrates bearing competing coordinating directing groups. The reaction is performed at room temperature and no inert atmosphere or exclusion of moisture is required. Mechanistic investigations revealed a substrate-dependent reversible C-H activation/protodemetalation step, a substrate-dependent turnover-limiting step, and the crucial role of the AgI additive in the deactivation of the iodination product towards further reaction.

5.
Chemistry ; 26(65): 14978-14986, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32757212

RESUMO

We have used experimental studies and DFT calculations to investigate the IrIII -catalyzed isomerization of allylic alcohols into carbonyl compounds, and the regiospecific isomerization-chlorination of allylic alcohols into α-chlorinated carbonyl compounds. The mechanism involves a hydride elimination followed by a migratory insertion step that may take place at Cß but also at Cα with a small energy-barrier difference of 1.8 kcal mol-1 . After a protonation step, calculations show that the final tautomerization can take place both at the Ir center and outside the catalytic cycle. For the isomerization-chlorination reaction, calculations show that the chlorination step takes place outside the cycle with an energy barrier much lower than that for the tautomerization to yield the saturated ketone. All the energies in the proposed mechanism are plausible, and the cycle accounts for the experimental observations.

6.
J Am Chem Soc ; 141(18): 7223-7234, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30974060

RESUMO

Recent advances in organic chemistry and materials chemistry have enabled the porosity of new materials to be accurately controlled on the nanometer scale. In this context, metal-organic frameworks (MOFs) have rapidly become one of the most attractive classes of solid supports currently under investigation in heterogeneous catalysis. Their unprecedented degree of tunability gives MOFs the chance to succeed where others have failed. The past decade has witnessed an exponential growth in the complexity of new structures. MOFs with a variety of topologies and pore sizes show excellent stability across wide ranges of pH and temperature. Even the controlled insertion of defects, to alter the MOF's properties in a predictable manner, has become commonplace. However, research on catalysis with MOFs has been sluggish in catching up with modern trends in organic chemistry. Relevant issues such as enantioselective processes, C-H activation, or olefin metathesis are still rarely discussed. In this Perspective, we highlight meritorious examples that tackle important issues from contemporary organic synthesis, and that provide a fair comparison with existing catalysts. Some of these MOF catalysts already outcompete state-of-the-art homogeneous solutions. For others, improvements may still be required, but they have merit in aiming for the bigger challenge. Furthermore, we also identify some important areas where MOFs are likely to make a difference, by addressing currently unmet needs in catalysis instead of trying to outcompete homogeneous catalysts in areas where they excel. Finally, we strongly advocate for rational design of MOF catalysts, founded on a deep mechanistic understanding of the events taking place inside the pore.

7.
Chemistry ; 25(10): 2631-2636, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30475410

RESUMO

1,4- and 1,5-diols undergo cyclodehydration upon treatment with cationic N-heterocyclic carbene (NHC)-IrIII complexes to give tetrahydrofurans and tetrahydropyrans, respectively. The mechanism was investigated, and a metal-hydride-driven pathway was proposed for all substrates, except for very electron-rich ones. This contrasts with the well-established classical pathways that involve nucleophilic substitution.

8.
J Am Chem Soc ; 140(26): 8206-8217, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29890070

RESUMO

The mechanism of the Heck C-C coupling reaction catalyzed by Pd@MOFs has been investigated using operando X-ray absorption spectroscopy (XAS) and powder X-ray diffraction (PXRD) combined with transmission electron microscopy (TEM) analysis and nuclear magnetic resonance (1H NMR) kinetic studies. A custom-made reaction cell was used, allowing operando PXRD and XAS data collection using high-energy synchrotron radiation. By analyzing the XAS data in combination with ex situ studies, the evolution of the palladium species is followed from the as-synthesized to its deactivated form. An adaptive reaction mechanism is proposed. Mononuclear Pd(II) complexes are found to be the dominant active species at the beginning of the reaction, which then gradually transform into Pd nanoclusters with 13-20 Pd atoms on average in later catalytic turnovers. Consumption of available reagent and substrate leads to coordination of Cl- ions to their surfaces, which causes the poisoning of the active sites. By understanding the deactivation process, it was possible to tune the reaction conditions and prolong the lifetime of the catalyst.

9.
Chemistry ; 24(45): 11564-11567, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29928782

RESUMO

The first method to access unsymmetrical aliphatic acyloins is presented. The method relies on a fast 1,3-hydride shift mediated by an IrIII complex in allylic alcohols followed by oxidation with TEMPO+ . The direct conversion of allylic alcohols into acyloins is achieved in a one-pot procedure. Further functionalization of the Cα' of the α-amino-oxylated ketone products gives access to highly functionalized unsymmetrical aliphatic ketones, which further highlights the utility of this transformation.

10.
Inorg Chem ; 56(8): 4577-4584, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28383897

RESUMO

Here we describe the topological transformation of the pores of a new framework in the bio-MOF-100 family (dia-c) into the known isomer (lcs) by doubling the pore volume, which occurs during postsynthesis modifications. During this transformation, reassembling of the metal-organic framework (MOF) building blocks into a completely different framework occurs, involving breaking/forming of metal-ligand bonds. MOF crystallinity and local structure are retained, as determined by powder X-ray diffraction (PXRD) and pair distribution function (PDF) analyses, respectively. We exploited the inherent dynamism of bio-MOF-100 by coupling chemical decorations of the framework using solvent-assisted ligand exchange to the topological change. Following this method and starting from the pristine dense dia-c phase, open lcs-bio-MOF-100 was prepared and functionalized in situ with an iridium complex (IrL). Alternatively, the dia-c MOF could be modified with wide-ranging amounts of IrL up to ca. 50 mol %, as determined by solution 1H NMR spectroscopy, by tuning the concentration of the solutions used and with no evidence for isomer transformation. The single-site nature of the iridium complexes within the MOFs was assessed by X-ray absorption spectroscopy (XAS) and PDF analyses. Ligand exchanges occurred quantitatively at room temperature, with no need of excess of the iridium metallolinker.

11.
J Am Chem Soc ; 138(40): 13408-13414, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27636591

RESUMO

A mild base-catalyzed strategy for the isomerization of allylic alcohols and allylic ethers has been developed. Experimental and computational investigations indicate that transition metal catalysts are not required when basic additives are present. As in the case of using transition metals under basic conditions, the isomerization catalyzed solely by base also follows a stereospecific pathway. The reaction is initiated by a rate-limiting deprotonation. Formation of an intimate ion pair between an allylic anion and the conjugate acid of the base results in efficient transfer of chirality. Through this mechanism, stereochemical information contained in the allylic alcohols is transferred to the ketone products. The stereospecific isomerization is also applicable for the first time to allylic ethers, yielding synthetically valuable enantioenriched (up to 97% ee) enol ethers.

12.
Chemistry ; 22(11): 3729-37, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26481867

RESUMO

A directed heterogeneous C-H activation/halogenation reaction catalyzed by readily synthesized Pd@MOF nanocatalysts was developed. The heterogeneous Pd catalysts used were a novel and environmentally benign Fe-based metal-organic framework (MOF)(Pd@MIL-88B-NH2(Fe)) and the previously developed Pd@MIL-101-NH2(Cr). Very high conversions and selectivities were achieved under very mild reaction conditions and in short reaction times. A wide variety of directing groups, halogen sources, and substitution patterns were well tolerated, and valuable polyhalogenated compounds were synthesized in a controlled manner. The synthesis of the Pd-functionalized Fe-based MOF and the recyclability of the two catalysts are also presented.

13.
Chemistry ; 22(21): 7184-9, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27111403

RESUMO

Chemoselective reduction of the C=C bond in a variety of α,ß-unsaturated carbonyl compounds using supported palladium nanoparticles is reported. Three different heterogeneous catalysts were compared using 1 atm of H2 : 1) nano-Pd on a metal-organic framework (MOF: Pd(0) -MIL-101-NH2 (Cr)), 2) nano-Pd on a siliceous mesocellular foam (MCF: Pd(0) -AmP-MCF), and 3) commercially available palladium on carbon (Pd/C). Initial studies showed that the Pd@MOF and Pd@MCF nanocatalysts were superior in activity and selectivity compared to commercial Pd/C. Both Pd(0) -MIL-101-NH2 (Cr) and Pd(0) -AmP-MCF were capable of delivering the desired products in very short reaction times (10-90 min) with low loadings of Pd (0.5-1 mol %). Additionally, the two catalytic systems exhibited high recyclability and very low levels of metal leaching.

14.
Chemistry ; 22(44): 15659-15663, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27650170

RESUMO

Remarkably simple IrIII catalysts enable the isomerization of primary and sec-allylic alcohols under very mild reaction conditions. X-ray absorption spectroscopy (XAS) and mass spectrometry (MS) studies indicate that the catalysts, with the general formula [Cp*IrIII ], require a halide ligand for catalytic activity, but no additives or additional ligands are needed.

15.
Chemistry ; 21(2): 861-6, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25367446

RESUMO

The synthesis of a metal-organic framework (UiO-67) functionalised simultaneously with two different transition metal complexes (Ir and Pd or Rh) through a one-pot procedure is reported for the first time. This has been achieved by an iterative modification of the synthesis parameters combined with characterisation of the resulting materials using different techniques, including X-ray absorption spectroscopy (XAS). The method also allows the first synthesis of UiO-67 with a very wide range of loadings (from 4 to 43 mol %) of an iridium complex ([IrCp*(bpydc)(Cl)Cl](2-) ; bpydc=2,2'-bipyridine-5,5'-dicarboxylate, Cp*=pentamethylcyclopentadienyl) through a pre-functionalisation methodology.

16.
Chemistry ; 21(30): 10896-902, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26100552

RESUMO

The chemical stability of metal-organic frameworks (MOFs) is a major factor preventing their use in industrial processes. Herein, it is shown that judicious choice of the base for the Suzuki-Miyaura cross-coupling reaction can avoid decomposition of the MOF catalyst Pd@MIL-101-NH2 (Cr). Four bases were compared for the reaction: K2 CO3 , KF, Cs2 CO3 and CsF. The carbonates were the most active and achieved excellent yields in shorter reaction times than the fluorides. However, powder XRD and N2 sorption measurements showed that the MOF catalyst was degraded when carbonates were used but remained crystalline and porous with the fluorides. XANES measurements revealed that the trimeric chromium cluster of Pd@MIL-101-NH2 (Cr) is still present in the degraded MOF. In addition, the different countercations of the base significantly affected the catalytic activity of the material. TEM revealed that after several catalytic runs many of the Pd nanoparticles (NPs) had migrated to the external surface of the MOF particles and formed larger aggregates. The Pd NPs were larger after catalysis with caesium bases compared to potassium bases.

17.
Chemistry ; 20(34): 10703-9, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24826924

RESUMO

α-Brominated ketones and aldehydes, with two adjacent electrophilic carbon atoms, are highly valuable synthetic intermediates in organic synthesis, however, their synthesis from unsymmetrical ketones is very challenging, and current methods suffer from low selectivity. We present a new, reliable, and efficient method for the synthesis of α-bromocarbonyl compounds in excellent yields and with excellent selectivities. Starting from allylic alcohols as the carbonyl precursors, the combination of a 1,3-hydrogen shift catalyzed by iridium(III) with an electrophilic bromination gives α-bromoketones and aldehydes in good to excellent yields. The selectivity of the process is determined by the structure of the starting allylic alcohol; thus, α-bromoketones formally derived from unsymmetrical ketones can be synthesized in a straightforward and selective manner.

18.
Org Lett ; 26(14): 2800-2805, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931032

RESUMO

The acid mediated ortho-iodination of Weinreb amides using a readily available catalyst is described. The selective ortho-iodination of Weinreb amides, challenging substrates in directed C-H activations, and also of benzamides is achieved. The process works under mild conditions and tolerates air and moisture, having a great potential for industrial applications. The methodology can be applied under mechanochemical conditions maintaining the reaction outcome and selectivity.

19.
Chemistry ; 19(23): 7274-302, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23606577

RESUMO

The preparation of chiral alcohols and amines by using iridium catalysis is reviewed. The methods presented include the reduction of ketones or imines by using hydrogen (hydrogenations), isopropanol, formic acid, or formate (transfer hydrogenations). Also dynamic and oxidative kinetic resolutions leading to chiral alcohols and amines are included. Selected literature reports from early contributions to December 2012 are discussed.


Assuntos
Álcoois/síntese química , Aminas/síntese química , Formiatos/química , Iminas/química , Irídio/química , Cetonas/química , Álcoois/química , Aminas/química , Catálise , Hidrogenação , Estrutura Molecular , Oxirredução , Estereoisomerismo
20.
Chemistry ; 19(51): 17483-93, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24265270

RESUMO

Palladium nanoparticles have been immobilized into an amino-functionalized metal-organic framework (MOF), MIL-101Cr-NH2, to form Pd@MIL-101Cr-NH2. Four materials with different loadings of palladium have been prepared (denoted as 4-, 8-, 12-, and 16 wt%Pd@MIL-101Cr-NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), N2-sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL-101Cr-NH2, electron tomography was employed to reconstruct the 3D volume of 8 wt%Pd@MIL-101Cr-NH2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high-energy X-rays (60 keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki-Miyaura cross-coupling reaction. The best catalytic performance was obtained with the MOF that contained 8 wt% palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6 nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15 mol%). The material can be recycled at least 10 times without alteration of its catalytic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA