Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2319057121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687790

RESUMO

Eosinophil recruitment is a pathological hallmark of many allergic and helminthic diseases. Here, we investigated chemokine receptor CCR3-induced eosinophil recruitment in sialyltransferase St3gal4-/- mice. We found a marked decrease in eosinophil extravasation into CCL11-stimulated cremaster muscles and into the inflamed peritoneal cavity of St3gal4-/- mice. Ex vivo flow chamber assays uncovered reduced adhesion of St3gal4-/- compared to wild type eosinophils. Using flow cytometry, we show reduced binding of CCL11 to St3gal4-/- eosinophils. Further, we noted reduced binding of CCL11 to its chemokine receptor CCR3 isolated from St3gal4-/- eosinophils. This was accompanied by almost absent CCR3 internalization of CCL11-stimulated St3gal4-/- eosinophils. Applying an ovalbumin-induced allergic airway disease model, we found a dramatic reduction in eosinophil numbers in bronchoalveolar lavage fluid following intratracheal challenge with ovalbumin in St3gal4-deficient mice. Finally, we also investigated tissue-resident eosinophils under homeostatic conditions and found reduced resident eosinophil numbers in the thymus and adipose tissue in the absence of ST3Gal-IV. Taken together, our results demonstrate an important role of ST3Gal-IV in CCR3-induced eosinophil recruitment in vivo rendering this enzyme an attractive target in reducing unwanted eosinophil infiltration in various disorders including allergic diseases.


Assuntos
Eosinófilos , Camundongos Knockout , Receptores CCR3 , Sialiltransferases , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Receptores CCR3/metabolismo , Receptores CCR3/genética , Sialiltransferases/metabolismo , Sialiltransferases/genética , Eosinófilos/metabolismo , Eosinófilos/imunologia , Camundongos , Quimiocina CCL11/metabolismo , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Líquido da Lavagem Broncoalveolar
2.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266954

RESUMO

Intestinal inflammation is the underlying basis of colitis and the inflammatory bowel diseases. These syndromes originate from genetic and environmental factors that remain to be fully identified. Infections are possible disease triggers, including recurrent human food-poisoning by the common foodborne pathogen Salmonella enterica Typhimurium (ST), which in laboratory mice causes progressive intestinal inflammation leading to an enduring colitis. In this colitis model, disease onset has been linked to Toll-like receptor-4-dependent induction of intestinal neuraminidase activity, leading to the desialylation, reduced half-life, and acquired deficiency of anti-inflammatory intestinal alkaline phosphatase (IAP). Neuraminidase (Neu) inhibition protected against disease onset; however, the source and identity of the Neu enzyme(s) responsible remained unknown. Herein, we report that the mammalian Neu3 neuraminidase is responsible for intestinal IAP desialylation and deficiency. Absence of Neu3 thereby prevented the accumulation of lipopolysaccharide-phosphate and inflammatory cytokine expression in providing protection against the development of severe colitis.


Assuntos
Colite/imunologia , Intestinos/imunologia , Neuraminidase/imunologia , Intoxicação Alimentar por Salmonella/imunologia , Animais , Colite/genética , Colite/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuraminidase/genética , Recidiva , Intoxicação Alimentar por Salmonella/genética , Intoxicação Alimentar por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/fisiologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
3.
Nat Immunol ; 17(6): 613-4, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27196512
4.
Genes Cells ; 26(1): 5-17, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33098150

RESUMO

c-Jun N-terminal kinases (JNKs) are constitutively activated in mammalian brains and are indispensable for their development and neural functions. MKK7 is an upstream activator of all JNKs. However, whether the common JNK signaling pathway regulates the brain's control of social behavior remains unclear. Here, we show that female mice in which Mkk7 is deleted specifically in mature neurons (Mkk7flox/flox Syn-Cre mice) give birth to a normal number of pups but fail to raise them due to a defect in pup retrieval. To explore the mechanism underlying this abnormality, we performed comprehensive behavioral tests. Mkk7flox/flox Syn-Cre mice showed normal locomotor functions and cognitive ability but exhibited depression-like behavior. cDNA microarray analysis of mutant brain revealed an altered gene expression pattern. Quantitative RT-PCR analysis demonstrated that mRNA expression levels of genes related to neural signaling pathways and a calcium channel were significantly different from controls. In addition, loss of neural MKK7 had unexpected regulatory effects on gene expression patterns in oligodendrocytes. These findings indicate that MKK7 has an important role in regulating the gene expression patterns responsible for promoting normal social behavior and staving off depression.


Assuntos
MAP Quinase Quinase 7/metabolismo , Comportamento Materno , Neurônios/metabolismo , Animais , Comportamento Animal , Feminino , MAP Quinase Quinase 7/deficiência , MAP Quinase Quinase 7/genética , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(15): 7465-7470, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910970

RESUMO

Circulating platelets have important functions in thrombosis and in modulating immune and inflammatory responses. However, the role of platelets in innate immunity to bacterial infection is largely unexplored. While human platelets rapidly kill Staphylococcus aureus, we found the neonatal pathogen group B Streptococcus (GBS) to be remarkably resistant to platelet killing. GBS possesses a capsule polysaccharide (CPS) with terminal α2,3-linked sialic acid (Sia) residues that mimic a common epitope present on the human cell surface glycocalyx. A GBS mutant deficient in CPS Sia was more efficiently killed by human platelets, thrombin-activated platelet releasate, and synthetic platelet-associated antimicrobial peptides. GBS Sia is known to bind inhibitory Sia-recognizing Ig superfamily lectins (Siglecs) to block neutrophil and macrophage activation. We show that human platelets also express high levels of inhibitory Siglec-9 on their surface, and that GBS can engage this receptor in a Sia-dependent manner to suppress platelet activation. In a mouse i.v. infection model, antibody-mediated platelet depletion increased susceptibility to platelet-sensitive S. aureus but did not alter susceptibility to platelet-resistant GBS. Elimination of murine inhibitory Siglec-E partially reversed platelet suppression in response to GBS infection. We conclude that GBS Sia has dual roles in counteracting platelet antimicrobial immunity: conferring intrinsic resistance to platelet-derived antimicrobial components and inhibiting platelet activation through engagement of inhibitory Siglecs. We report a bacterial virulence factor for evasion of platelet-mediated innate immunity.


Assuntos
Cápsulas Bacterianas/metabolismo , Plaquetas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ativação Plaquetária , Infecções Estreptocócicas/metabolismo , Streptococcus agalactiae , Fatores de Virulência/metabolismo , Adulto , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Atividade Bactericida do Sangue , Plaquetas/patologia , Feminino , Glicocálix/metabolismo , Glicocálix/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidade
6.
Proc Natl Acad Sci U S A ; 114(31): 8360-8365, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716912

RESUMO

Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1-/- ). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1-/- mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1-/- platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell-Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1-/- platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1-/- platelets by the Kupffer cell through its C-type lectin receptor CLEC4F. These findings provide insights into an essential role for core 1 O-glycosylation of platelets in their clearance in the liver.


Assuntos
Plaquetas/metabolismo , Galactosiltransferases/genética , Células de Kupffer/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Animais , Receptor de Asialoglicoproteína/metabolismo , Hepatócitos/metabolismo , Homeostase/fisiologia , Lectinas Tipo C/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombocitopenia/patologia
7.
Proteomics ; 19(5): e1800389, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30706660

RESUMO

Sepsis is an extreme host response to infection that leads to loss of organ function and cardiovascular integrity. Mortality from sepsis is on the rise. Despite more than three decades of research and clinical trials, specific diagnostic and therapeutic strategies for sepsis are still absent. The use of LFQ- and TMT-based quantitative proteomics is reported here to study the plasma proteome in five mouse models of sepsis. A knowledge-based interpretation of the data reveals a protein network with extensive connectivity through documented functional or physical interactions. The individual proteins in the network all have a documented role in sepsis and are known to be extracellular. The changes in protein abundance observed in the mouse models of sepsis have for the most part the same directionality (increased or decreased abundance) as reported in the literature for human sepsis. This network has been named the Plasma Proteome Signature of Sepsis (PPSS). The PPSS is a quantifiable molecular readout that can supplant the current symptom-based approach used to diagnose sepsis. This type of molecular interpretation of sepsis, its progression, and its response to therapeutic intervention are an important step in advancing our understanding of sepsis, and for discovering and evaluating new therapeutic strategies.


Assuntos
Proteínas Sanguíneas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Sepse/metabolismo , Animais , Proteínas Sanguíneas/análise , Feminino , Masculino , Camundongos , Proteoma/análise , Proteoma/metabolismo , Sepse/sangue , Espectrometria de Massas em Tandem/métodos
8.
Proc Natl Acad Sci U S A ; 112(44): 13657-62, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26489654

RESUMO

The composition and functions of the secreted proteome are controlled by the life spans of different proteins. However, unlike intracellular protein fate, intrinsic factors determining secreted protein aging and turnover have not been identified and characterized. Almost all secreted proteins are posttranslationally modified with the covalent attachment of N-glycans. We have discovered an intrinsic mechanism of secreted protein aging and turnover linked to the stepwise elimination of saccharides attached to the termini of N-glycans. Endogenous glycosidases, including neuraminidase 1 (Neu1), neuraminidase 3 (Neu3), beta-galactosidase 1 (Glb1), and hexosaminidase B (HexB), possess hydrolytic activities that temporally remodel N-glycan structures, progressively exposing different saccharides with increased protein age. Subsequently, endocytic lectins with distinct binding specificities, including the Ashwell-Morell receptor, integrin αM, and macrophage mannose receptor, are engaged in N-glycan ligand recognition and the turnover of secreted proteins. Glycosidase inhibition and lectin deficiencies increased protein life spans and abundance, and the basal rate of N-glycan remodeling varied among distinct proteins, accounting for differences in their life spans. This intrinsic multifactorial mechanism of secreted protein aging and turnover contributes to health and the outcomes of disease.


Assuntos
Proteínas/metabolismo , Glicosilação , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional
9.
Circ Res ; 114(6): 976-81, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24425712

RESUMO

RATIONALE: Sialylation by α2,3-sialyltransferases has been shown to be a crucial glycosylation step in the generation of functional selectin ligands. Recent evidence suggests that sialylation also affects the binding of chemokines to their corresponding receptor. OBJECTIVE: Because the chemokine receptors for Ccl5 and Ccl2 are important in atherogenic recruitment of neutrophils and monocytes, we here investigated the role of α2,3-sialyltransferase IV (ST3Gal-IV) in Ccl5- and Ccl2-mediated myeloid cell arrest and further studied its relevance in a mouse model of atherosclerosis. METHODS AND RESULTS: St3Gal4-deficient myeloid cells showed a reduced binding of Ccl5 and an impaired Ccl5-triggered integrin activation. Correspondingly, Ccl5-induced arrest on tumor necrosis factor-α-stimulated endothelium was almost completely abrogated, as observed in flow chamber adhesion assays and during ex vivo perfusion or intravital microscopy of carotid arteries. Moreover, Ccl5-triggered neutrophil and monocyte extravasation into the peritoneal cavity was severely reduced in St3Gal4(-/-) mice. In contrast, St3Gal4 deficiency did not significantly affect Ccl2 binding and only marginally decreased Ccl2-induced flow arrest of myeloid cells. In agreement with the crucial role of leukocyte accumulation in atherogenesis, and the importance of Ccl5 chemokine receptors mediating myeloid cell recruitment to atherosclerotic vessels, St3Gal4 deficiency drastically reduced the size, stage, and inflammatory cell content of atherosclerotic lesions in Apoe(-/-) mice on high-fat diet. CONCLUSIONS: In summary, these findings identify ST3Gal-IV as a promising target to reduce inflammatory leukocyte recruitment and arrest.


Assuntos
Aterosclerose/enzimologia , Quimiocina CCL5/fisiologia , Migração e Rolagem de Leucócitos/fisiologia , Células Mieloides/patologia , Sialiltransferases/deficiência , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Quimiocina CCL2/metabolismo , Gorduras na Dieta/toxicidade , Feminino , Inflamação , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/farmacologia , Processamento de Proteína Pós-Traducional , Sialiltransferases/genética , Sialiltransferases/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , beta-Galactosídeo alfa-2,3-Sialiltransferase
10.
Proc Natl Acad Sci U S A ; 110(50): 20218-23, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24284176

RESUMO

The endocytic Ashwell-Morell receptor (AMR) of hepatocytes detects pathogen remodeling of host glycoproteins by neuraminidase in the bloodstream and mitigates the lethal coagulopathy of sepsis. We have investigated the mechanism of host protection by the AMR during the onset of sepsis and in response to the desialylation of blood glycoproteins by the NanA neuraminidase of Streptococcus pneumoniae. We find that the AMR selects among potential glycoprotein ligands unmasked by microbial neuraminidase activity in pneumococcal sepsis to eliminate from blood circulation host factors that contribute to coagulation and thrombosis. This protection is attributable in large part to the rapid induction of a moderate thrombocytopenia by the AMR. We further show that neuraminidase activity in the blood can be manipulated to induce the clearance of AMR ligands including platelets, thereby preactivating a protective response in pneumococcal sepsis that moderates the severity of disseminated intravascular coagulation and enables host survival.


Assuntos
Receptor de Asialoglicoproteína/imunologia , Hepatócitos/imunologia , Sepse/prevenção & controle , Streptococcus pneumoniae/imunologia , Análise de Variância , Animais , Receptor de Asialoglicoproteína/metabolismo , Tempo de Sangramento , Plaquetas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuraminidase/administração & dosagem , Neuraminidase/metabolismo , Sepse/imunologia , Sepse/microbiologia
11.
Proc Natl Acad Sci U S A ; 110(46): 18460-5, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24167271

RESUMO

Aptamers are promising affinity reagents that are potentially well suited for high-throughput discovery, as they are chemically synthesized and discovered via completely in vitro selection processes. Recent advancements in selection, sequencing, and the use of modified bases have improved aptamer quality, but the overall process of aptamer generation remains laborious and low-throughput. This is because binding characterization remains a critical bottleneck, wherein the affinity and specificity of each candidate aptamer are measured individually in a serial manner. To accelerate aptamer discovery, we devised the Quantitative Parallel Aptamer Selection System (QPASS), which integrates microfluidic selection and next-generation sequencing with in situ-synthesized aptamer arrays, enabling simultaneous measurement of affinity and specificity for thousands of candidate aptamers in parallel. After using QPASS to select aptamers for the human cancer biomarker angiopoietin-2 (Ang2), we in situ synthesized arrays of the selected sequences and obtained equilibrium dissociation constants (Kd) for every aptamer in parallel. We thereby identified over a dozen high-affinity Ang2 aptamers, with Kd as low as 20.5 ± 7.3 nM. The same arrays enabled us to quantify binding specificity for these aptamers in parallel by comparing relative binding of differentially labeled target and nontarget proteins, and by measuring their binding affinity directly in complex samples such as undiluted serum. Finally, we show that QPASS offers a compelling avenue for exploring structure-function relationships for large numbers of aptamers in parallel by coupling array-based affinity measurements with next-generation sequencing data to identify nucleotides and motifs within the aptamer that critically affect Ang2 binding.


Assuntos
Aptâmeros de Peptídeos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Proteínas/metabolismo , Proteômica/métodos , Aptâmeros de Peptídeos/genética , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Fluorescência , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise dos Mínimos Quadrados , Microfluídica/métodos , Ligação Proteica
12.
Blood ; 120(5): 1015-26, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22700726

RESUMO

Binding of selectins to their glycan ligands is a prerequisite for successful leukocyte trafficking. During synthesis and transport through the secretory pathway, selectin ligands are constructed with the participation of one or more sialyltransferases of the ST3Gal subfamily. Previous studies established that ST3Gal-IV only partially contributes to selectin ligand formation, indicating that other ST3Gal-sialyltransferases are involved. By generating and analyzing St3gal6-null mice and St3gal4/St3gal6 double-deficient mice, in the present study, we found that binding of E- and P-selectin to neutrophils and L-selectin binding to lymph node high endothelial venules is reduced in the absence of ST3Gal-VI and to a greater extent in double-deficient mice. In an ex vivo flow chamber assay, P- and E-selectin-dependent leukocyte rolling was mildly reduced in St3gal6-null mice and more severely in double-deficient mice. In inflamed cremaster muscle venules of St3gal6-null mice, we found impaired P-selectin-dependent, but not E-selectin-dependent leukocyte rolling, whereas in double-deficient mice, E-selectin-dependent rolling was almost completely absent. Furthermore, neutrophil recruitment into the inflamed peritoneal cavity and lymphocyte homing to secondary lymphoid organs were impaired in St3gal6-null mice and more severely in double-deficient mice. The results of the present study demonstrate the coordinated participation of both ST3Gal-VI and ST3Gal-IV in the synthesis of functional selectin ligands.


Assuntos
Selectinas/biossíntese , Sialiltransferases/fisiologia , Animais , Capilares/metabolismo , Capilares/fisiologia , Selectina E/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Hemostasia/genética , Migração e Rolagem de Leucócitos/genética , Ligantes , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Selectina-P/metabolismo , Ligação Proteica , Fluxo Sanguíneo Regional/genética , Fluxo Sanguíneo Regional/fisiologia , Selectinas/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Distribuição Tecidual , beta-Galactosídeo alfa-2,3-Sialiltransferase
13.
Glycobiology ; 23(3): 363-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23118208

RESUMO

The consortium for functional glycomics (CFG) was a large research initiative providing networking and resources for investigators studying the role of glycans and glycan-binding proteins in health and disease. Starting in 2001, six scientific cores were established to generate data, materials and new technologies. By the end of funding in 2011, the mouse phenotype core (MPC) submitted data to a website from the phenotype screen of 36 mutant mouse strains deficient in a gene for either a glycan-binding protein (GBP) or glycosyltransferase (GT). Each mutant strain was allotted three months for analysis and screened by standard phenotype assays used in the fields of immunology, histology, hematology, coagulation, serum chemistry, metabolism and behavior. Twenty of the deficient mouse strains had been studied in other laboratories, and additional tests were performed on these strains to confirm previous observations and discover new data. The CFG constructed 16 new homozygous mutant mouse strains and completed the initial phenotype screen of the majority of these new mutant strains. In total, >300 phenotype changes were observed, but considering the over 100 assays performed on each strain, most of the phenotypes were unchanged. Phenotype differences include abnormal testis morphology in GlcNAcT9- and Siglec-H-deficient mice and lethality in Pomgnt1-deficient mice. The numerous altered phenotypes discovered, along with the consideration of the significant findings of normality, will provide a platform for future characterization to understand the important roles of glycans and GBPs in the mechanisms of health and disease.


Assuntos
Glicosiltransferases/genética , Lectinas/genética , Camundongos Mutantes/genética , Fenótipo , Animais , Marcação de Genes , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes/anatomia & histologia , Camundongos Mutantes/imunologia , Camundongos Mutantes/fisiologia , Mutação
14.
iScience ; 26(10): 107883, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37752945

RESUMO

The colonic mucosal barrier protects against infection, inflammation, and tissue ulceration. Composed primarily of Mucin-2, proteolytic erosion of this barrier is an invariant feature of colitis; however, the molecular mechanisms are not well understood. We have applied a recurrent food poisoning model of acquired inflammatory bowel disease using Salmonella enterica Typhimurium to investigate mucosal barrier erosion. Our findings reveal an innate Toll-like receptor 4-dependent mechanism activated by previous infection that induces Neu3 neuraminidase among colonic epithelial cells concurrent with increased Cathepsin-G protease secretion by Paneth cells. These anatomically separated host responses merge with the desialylation of nascent colonic Mucin-2 by Neu3 rendering the mucosal barrier susceptible to increased proteolytic breakdown by Cathepsin-G. Depletion of Cathepsin-G or Neu3 function using pharmacological inhibitors or genetic-null alleles protected against Mucin-2 proteolysis and barrier erosion and reduced the frequency and severity of colitis, revealing approaches to preserve and potentially restore the mucosal barrier.

15.
Glycobiology ; 22(10): 1289-301, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22735313

RESUMO

Gangliosides-sialylated glycosphingolipids-are the major glycoconjugates of nerve cells. The same four structures-GM1, GD1a, GD1b and GT1b-comprise the great majority of gangliosides in mammalian brains. They share a common tetrasaccharide core (Galß1-3GalNAcß1-4Galß1-4Glcß1-1'Cer) with one or two sialic acids on the internal galactose and zero (GM1 and GD1b) or one (GD1a and GT1b) α2-3-linked sialic acid on the terminal galactose. Whereas the genes responsible for the sialylation of the internal galactose are known, those responsible for terminal sialylation have not been established in vivo. We report that St3gal2 and St3gal3 are responsible for nearly all the terminal sialylation of brain gangliosides in the mouse. When brain ganglioside expression was analyzed in adult St3gal1-, St3gal2-, St3gal3- and St3gal4-null mice, only St3gal2-null mice differed significantly from wild type, expressing half the normal amount of GD1a and GT1b. St3gal1/2-double-null mice were no different than St3gal2-single-null mice; however, St3gal2/3-double-null mice were >95% depleted in gangliosides GD1a and GT1b. Total ganglioside expression (lipid-bound sialic acid) in the brains of St3gal2/3-double-null mice was equivalent to that in wild-type mice, whereas total protein sialylation was reduced by half. St3gal2/3-double-null mice were small, weak and short lived. They were half the weight of wild-type mice at weaning and displayed early hindlimb dysreflexia. We conclude that the St3gal2 and St3gal3 gene products (ST3Gal-II and ST3Gal-III sialyltransferases) are largely responsible for ganglioside terminal α2-3 sialylation in the brain, synthesizing the major brain gangliosides GD1a and GT1b.


Assuntos
Encéfalo/metabolismo , Gangliosídeos/biossíntese , Animais , Camundongos , Camundongos Knockout , Sialiltransferases/deficiência , Sialiltransferases/metabolismo , beta-Galactosídeo alfa-2,3-Sialiltransferase
16.
Proc Natl Acad Sci U S A ; 106(38): 16517-22, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19666501

RESUMO

Millions afflicted with Chagas disease and other disorders of aberrant glycosylation suffer symptoms consistent with altered electrical signaling such as arrhythmias, decreased neuronal conduction velocity, and hyporeflexia. Cardiac, neuronal, and muscle electrical signaling is controlled and modulated by changes in voltage-gated ion channel activity that occur through physiological and pathological processes such as development, epilepsy, and cardiomyopathy. Glycans attached to ion channels alter channel activity through isoform-specific mechanisms. Here we show that regulated and aberrant glycosylation modulate cardiac ion channel activity and electrical signaling through a cell-specific mechanism. Data show that nearly half of 239 glycosylation-associated genes (glycogenes) were significantly differentially expressed among neonatal and adult atrial and ventricular myocytes. The N-glycan structures produced among cardiomyocyte types were markedly variable. Thus, the cardiac glycome, defined as the complete set of glycan structures produced in the heart, is remodeled. One glycogene, ST8sia2, a polysialyltransferase, is expressed only in the neonatal atrium. Cardiomyocyte electrical signaling was compared in control and ST8sia2((-/-)) neonatal atrial and ventricular myocytes. Action potential waveforms and gating of less sialylated voltage-gated Na+ channels were altered consistently in ST8sia2((-/-)) atrial myocytes. ST8sia2 expression had no effect on ventricular myocyte excitability. Thus, the regulated (between atrium and ventricle) and aberrant (knockout in the neonatal atrium) expression of a single glycogene was sufficient to modulate cardiomyocyte excitability. A mechanism is described by which cardiac function is controlled and modulated through physiological and pathological processes that involve regulated and aberrant glycosylation.


Assuntos
Glicoproteínas/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Potenciais de Ação , Animais , Animais Recém-Nascidos , Análise por Conglomerados , Eletrofisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/metabolismo , Glicosilação , Coração/crescimento & desenvolvimento , Coração/fisiologia , Camundongos , Camundongos Knockout , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sialiltransferases/genética , Sialiltransferases/metabolismo , Sialiltransferases/fisiologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Canais de Sódio/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
ACS Infect Dis ; 8(5): 1075-1085, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35486714

RESUMO

Sepsis is an extreme inflammatory response to infection that occurs in the bloodstream and causes damage throughout the body. Glycosylation is known to play a role in immunity and inflammation, but the role of glycans in sepsis is not well-defined. Herein, we profiled the serum glycomes of experimental mouse sepsis models to identify changes induced by 4 different clinical bacterial pathogens (Gram-positive: Streptococcus pneumoniae and Staphylococcus aureus, Gram-negative: Escherichia coli and Salmonella Typhimurium) using our lectin microarray technology. We observed global shifts in the blood sera glycome that were conserved across all four species, regardless of whether they were Gram positive or negative. Bisecting GlcNAc was decreased upon sepsis and a strong increase in core 1/3 O-glycans was observed. Lectin blot analysis revealed a high molecular weight protein induced in sepsis by all four bacteria as the major cause of the core 1/3 O-glycan shift. Analysis of this band by mass spectrometry identified interalpha-trypsin inhibitor heavy chains (ITIHs) and fibronectin, both of which are associated with human sepsis. Shifts in the glycosylation of these proteins were observed. Overall, our work points toward a common mechanism for bacterially induced sepsis, marked by conserved changes in the glycome.


Assuntos
Glicômica , Sepse , Animais , Bactérias/metabolismo , Glicômica/métodos , Lectinas , Camundongos , Polissacarídeos
18.
EBioMedicine ; 78: 103965, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35349828

RESUMO

BACKGROUND: Although sepsis accounts for 1 in 5 deaths globally, few molecular therapies exist for this condition. The development of effective biomarkers and treatments for sepsis requires a more complete understanding of host responses and pathogenic mechanisms at early stages of disease to minimize host-driven pathology. METHODS: An alternative to the current symptom-based approach used to diagnose sepsis is a precise assessment of blood proteomic changes during the onset and progression of Salmonella Typhimurium (ST) murine sepsis. FINDINGS: A distinct pattern of coagulation factor protein abundance was identified in the pre-septic state- prior to overt disease symptoms or bacteremia- that was predictive of the dysregulation of fibrinolytic and anti-coagulant activities and resultant consumptive coagulopathy during ST murine sepsis. Moreover, the changes in protein abundance observed generally have the same directionality (increased or decreased abundance) reported for human sepsis. Significant overlap of ST coagulopathic activities was observed in Gram-negative Escherichia coli- but not in Gram-positive staphylococcal or pneumococcal murine sepsis models. Treatment with matrix metalloprotease inhibitors prevented aberrant inflammatory and coagulopathic activities post-ST infection and increased survival. Antibiotic treatment regimens initiated after specific changes arise in the plasma proteome post-ST infection were predictive of an increase in disease relapse and death after cessation of antibiotic treatment. INTERPRETATION: Altered blood proteomics provides a platform to develop rapid and easy-to-perform tests to predict sepsis for early intervention via biomarker incorporation into existing blood tests prompted by patient presentation with general malaise, and to stratify Gram-negative and Gram-positive infections for appropriate treatment. Antibiotics are less effective in microbial clearance when initiated after the onset of altered blood proteomics as evidenced by increased disease relapse and death after termination of antibiotic therapy. Treatment failure is potentially due to altered bacterial / host-responses and associated increased host-driven pathology, providing insight into why delays in antibiotic administration in human sepsis are associated with increased risk for death. Delayed treatment may thus require prolonged therapy for microbial clearance despite the prevailing notion of antibiotic de-escalation and shortened courses of antibiotics to improve drug stewardship. FUNDING: National Institutes of Health, U.S. Army.


Assuntos
Bacteriemia , Infecções Pneumocócicas , Sepse , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/microbiologia , Biomarcadores , Fatores de Coagulação Sanguínea/uso terapêutico , Humanos , Camundongos , Infecções Pneumocócicas/tratamento farmacológico , Proteômica , Recidiva , Sepse/complicações , Sepse/tratamento farmacológico
19.
PNAS Nexus ; 1(3): pgac113, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35967980

RESUMO

Glycosidases are hydrolytic enzymes studied principally in the context of intracellular catabolism within the lysosome. Therefore, glycosidase activities are classically measured in experimentally acidified assay conditions reflecting their low pH optima. However, glycosidases are also present in the bloodstream where they may retain sufficient activity to participate in the regulation of glycoprotein half-lives, proteostasis, and disease pathogenesis. We have, herein, established at physiological pH 7.4 in blood plasma and sera the normal ranges of four major glycosidase activities essential for blood glycoprotein remodeling in healthy mice and humans. These activities included ß-galactosidase, ß-N-acetylglucosaminidase, α-mannosidase, and α-fucosidase. We have identified their origins to include the mammalian genes Glb1, HexB, Man2a1, and Fuca1. In experimental sepsis, excursions of glycosidase activities occurred with differences in host responses to discrete bacterial pathogens. Among similar excursions in human sepsis, the elevation of ß-galactosidase activity was a prognostic indicator of increased likelihood of patient death.

20.
J Biol Chem ; 285(48): 37683-92, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20841351

RESUMO

Alterations in glycosylation play an important role during intestinal cell differentiation. Here, we compared expression of mucin-type O-glycan synthases from proliferating and differentiated HT-29 and Caco-2 cells. Mucin-type O-glycan structures were analyzed at both stages by mass spectrometry. Core2 ß1,6-N-acetylglucosaminyltransferase-2 (C2GnT-2) was markedly increased in differentiated HT-29 and Caco-2 cells, but the core3 structure was hardly detectable. To determine whether such differential expression of mucin-type O-glycan structures has physiological significance in intestinal cell differentiation, expression of sucrase isomaltase (SI) and dipeptidyl-peptidase IV (DPP-IV), two well known intestinal differentiation markers, was examined. Interestingly, the fully glycosylated mature form of SI was decreased in C2GnT-2 knock-out mice but not in core2 N-acetylglucosaminyltransferase-3 (C2GnT-3) nulls. In addition, expression of SI and DPP-IV was dramatically reduced in C2GnT-1-3 triple knock-out mice. These patterns were confirmed by RNAi analysis; C2GnT-2 knockdown significantly reduced cell surface expression of SI and DPP-IV in Caco-2 cells. Similarly, overexpression of the core3 structure in HT-29 cells attenuated cell surface expression of both enzymes. These findings indicate that core3 O-glycan structure regulates cell surface expression of SI and DPP-IV and that core2 O-glycan is presumably an essential mucin-type O-glycan structure found in both molecules in vivo. Finally, goblet cells in the upper part of the crypt showed impaired maturation in the core2 O-glycan-deficient mice. These studies are the first to clearly identify functional mucin-type O-glycan structures modulating cell surface expression of SI and DPP-IV during the intestinal cell differentiation.


Assuntos
Diferenciação Celular , Dipeptidil Peptidase 4/metabolismo , Regulação Enzimológica da Expressão Gênica , Intestinos/citologia , Intestinos/enzimologia , N-Acetilglucosaminiltransferases/química , Complexo Sacarase-Isomaltase/metabolismo , Animais , Células CACO-2 , Dipeptidil Peptidase 4/genética , Glicosilação , Células HT29 , Humanos , Intestinos/química , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Complexo Sacarase-Isomaltase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA