Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 142(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31343659

RESUMO

It has been hypothesized that early and rapid filtration of blood from cerebrospinal fluid (CSF) in postsubarachnoid hemorrhage patients may reduce hospital stay and related adverse events. In this study, we formulated a subject-specific computational fluid dynamics (CFD) model to parametrically investigate the impact of a novel dual-lumen catheter-based CSF filtration system, the Neurapheresis™ system (Minnetronix Neuro, Inc., St. Paul, MN), on intrathecal CSF dynamics. The operating principle of this system is to remove CSF from one location along the spine (aspiration port), externally filter the CSF routing the retentate to a waste bag, and return permeate (uncontaminated CSF) to another location along the spine (return port). The CFD model allowed parametric simulation of how the Neurapheresis system impacts intrathecal CSF velocities and steady-steady streaming under various Neurapheresis flow settings ranging from 0.5 to 2.0 ml/min and with a constant retentate removal rate of 0.2 ml/min simulation of the Neurapheresis system were compared to a lumbar drain simulation with a typical CSF removal rate setting of 0.2 ml/min. Results showed that the Neurapheresis system at a maximum flow of 2.0 ml/min increased average steady streaming CSF velocity 2× in comparison to lumbar drain (0.190 ± 0.133 versus 0.093 ± 0.107 mm/s, respectively). This affect was localized to the region within the Neurapheresis flow loop. The mean velocities introduced by the flow loop were relatively small in comparison to normal cardiac-induced CSF velocities.


Assuntos
Simulação por Computador , Hidrodinâmica , Modelos Biológicos , Coluna Vertebral
2.
Cerebellum ; 17(4): 404-418, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29383659

RESUMO

Type I Chiari malformation (CMI) is a neurological condition in which the cerebellar tonsils descend into the cervical spinal subarachnoid space resulting in cervico-medullary compression. Early case-control investigations have indicated cognitive deficits in the areas of attention, memory, processing speed, and visuospatial function. The present study further examined cognitive and emotional processing deficits associated with CMI using a dual-task paradigm. Nineteen CMI patients were recruited during pre-surgical consultation and 19 matched control participants identified emotional expressions in separate single and asynchronous dual-task designs. To extend earlier behavioral studies of cognitive effects in CMI, we recorded event-related potentials (ERPs) in the dual-task design. Though response times were slower for CMI patients across the two tasks, behavioral and ERP analyses indicated that patients did not differ from matched controls in the ability to allocate attentional resources between the two tasks. P1 ERP component analyses provided no indication of an emotional arousal deficit in our CMI sample while P3 ERP component analyses suggested a CMI-related deficit in emotional regulation. P3 analysis also yielded evidence for a frontalization of neurophysiological activity in CMI patients. Pain and related depression and anxiety factors accounted for CMI deficits in single-task, but not dual-task, response times. Results are consistent with a dysfunctional fronto-parietal attentional network resulting from either the indirect effects of chronic pain or the direct effects of CMI pathophysiology stemming from cervico-medullary compression.


Assuntos
Malformação de Arnold-Chiari/fisiopatologia , Malformação de Arnold-Chiari/psicologia , Encéfalo/fisiopatologia , Cognição/fisiologia , Emoções/fisiologia , Reconhecimento Facial/fisiologia , Adulto , Atenção/fisiologia , Dor Crônica/fisiopatologia , Dor Crônica/psicologia , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Percepção Social
3.
J Biomech Eng ; 140(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30003260

RESUMO

Cerebrospinal fluid (CSF) dynamics are thought to play a vital role in central nervous system (CNS) physiology. The objective of this study was to investigate the impact of spinal cord (SC) nerve roots (NR) on CSF dynamics. A subject-specific computational fluid dynamics (CFD) model of the complete spinal subarachnoid space (SSS) with and without anatomically realistic NR and nonuniform moving dura wall deformation was constructed. This CFD model allowed detailed investigation of the impact of NR on CSF velocities that is not possible in vivo using magnetic resonance imaging (MRI) or other noninvasive imaging methods. Results showed that NR altered CSF dynamics in terms of velocity field, steady-streaming, and vortical structures. Vortices occurred in the cervical spine around NR during CSF flow reversal. The magnitude of steady-streaming CSF flow increased with NR, in particular within the cervical spine. This increase was located axially upstream and downstream of NR due to the interface of adjacent vortices that formed around NR.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Hidrodinâmica , Modelos Anatômicos , Raízes Nervosas Espinhais/anatomia & histologia , Raízes Nervosas Espinhais/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Modelagem Computacional Específica para o Paciente , Raízes Nervosas Espinhais/diagnóstico por imagem , Espaço Subaracnóideo/anatomia & histologia , Espaço Subaracnóideo/diagnóstico por imagem , Espaço Subaracnóideo/fisiologia , Adulto Jovem
4.
J Neuroradiol ; 45(1): 23-31, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28826656

RESUMO

PURPOSE: Type I Chiari malformation (CMI) is a radiologically-defined structural dysmorphism of the hindbrain and posterior cranial fossa (PCF). Traditional radiographic identification of CMI relies on the measurement of the cerebellar tonsils in relation to the foramen magnum with or without associated abnormalities of the neuraxis. The primary goal of this retrospective study was to comprehensively assess morphometric parameters above the McRea line in a group of female CMI patients and normal controls. MATERIAL AND METHODS: Twenty-nine morphological measurements were taken on 302 mid-sagittal MR images of adult female CMI patients (n=162) and healthy controls (n=140). All MR images were voluntarily provided by CMI subjects through an online database and control participant images were obtained through the Human Connectome Project and a local hospital system. RESULTS: Analyses were performed on the full dataset of adult female MR images and a restricted dataset of 229 participants that were equated for age, race, and body mass index. Eighteen group differences were identified in the PCF area that we grouped into three clusters; PCF structures heights, clivus angulation, and odontoid process irregularity. Fourteen group differences persisted after equating our CMI and control groups on demographic characteristics. CONCLUSION: PCF structures reliably differ in adult female CMI patients relative to healthy controls. These differences reflect structural abnormalities in the osseous and soft tissue structures of the clivus, odontoid process, and cerebellum. Clinical and pathophysiological implications are discussed.


Assuntos
Malformação de Arnold-Chiari/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Pontos de Referência Anatômicos , Estudos de Casos e Controles , Fossa Craniana Posterior/anormalidades , Fossa Craniana Posterior/diagnóstico por imagem , Feminino , Humanos , Estudos Retrospectivos , Rombencéfalo/anormalidades , Rombencéfalo/diagnóstico por imagem
5.
J Magn Reson Imaging ; 46(2): 431-439, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28152239

RESUMO

PURPOSE: To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). MATERIALS AND METHODS: To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. RESULTS: In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40. CONCLUSION: RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439.


Assuntos
Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Microscopia de Contraste de Fase , Respiração , Adulto , Líquido Cefalorraquidiano , Simulação por Computador , Meios de Contraste , Feminino , Forame Magno , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Fluxo Pulsátil , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Software , Espaço Subaracnóideo , Decúbito Dorsal , Adulto Jovem
6.
J Biomech Eng ; 139(8)2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28462417

RESUMO

A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 µm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.


Assuntos
Líquido Cefalorraquidiano/fisiologia , Simulação por Computador , Hidrodinâmica , Animais , Líquido Cefalorraquidiano/diagnóstico por imagem , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino
7.
J Magn Reson Imaging ; 44(2): 463-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26788935

RESUMO

PURPOSE: To assess the effects of cerebrospinal fluid (CSF) bidirectional motion in Chiari malformation type I (CMI), we monitored CSF velocity amplitudes on phase contrast MRI (PC-MRI) in patients before and after surgery; and in healthy volunteers. MATERIALS AND METHODS: 10 pediatric volunteers and 10 CMI patients participated in this study. CMI patients underwent PC-MRI scans before and approximately 14 months following surgery. Two parameters-amplitude of mean velocity (AMV) and amplitude of peak velocity (APV) of CSF-were derived from the data. Measurements were made at the mid-portion of the cerebral aqueduct, and anterior and posterior compartments of the spinal canal at the craniovertebral junction (CVJ). RESULTS: AMV and APV within the cerebral aqueduct were greater in preoperative assessments of the CMI patients compared to normal volunteers. Statistical significance was noted when comparing aqueductal AMV between the preoperative values and normal controls (P = 0.03), and before and after surgery in the CMI patients (P = 0.02). Lower values of AMV (P = 0.02) were noted in the anterior CVJ compartment in the patients before and after surgery when compared to the normal volunteers. There were no significant correlations (P = 0.06) noted for the APV at the CVJ between the normal control and patients, before or after surgery. CONCLUSION: In pediatric CMI patients, AMV for CSF within the cerebral aqueduct and anterior CVJ subarachnoid space are significantly elevated preoperatively and normalize following surgery. Given the biphasic CSF motion, measuring amplitude accounts for cranial and caudal flow. It may offer an alternative parameter to assess postsurgical outcome. J. Magn. Reson. Imaging 2016;44:463-470.


Assuntos
Malformação de Arnold-Chiari/diagnóstico por imagem , Malformação de Arnold-Chiari/cirurgia , Aqueduto do Mesencéfalo/diagnóstico por imagem , Líquido Cefalorraquidiano/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Malformação de Arnold-Chiari/líquido cefalorraquidiano , Aqueduto do Mesencéfalo/patologia , Líquido Cefalorraquidiano/citologia , Descompressão Cirúrgica , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Reologia/métodos , Sensibilidade e Especificidade , Resultado do Tratamento
8.
J Biomech Eng ; 137(5): 051002, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25647090

RESUMO

The purpose of the present study was to compare subject-specific magnetic resonance imaging (MRI)-based computational fluid dynamics (CFD) simulations with time-resolved three-directional (3D) velocity-encoded phase-contrast MRI (4D PCMRI) measurements of the cerebrospinal fluid (CSF) velocity field in the cervical spinal subarachnoid space (SSS). Three-dimensional models of the cervical SSS were constructed based on MRI image segmentation and anatomical measurements for a healthy subject and patient with Chiari I malformation. CFD was used to simulate the CSF motion and compared to the 4D PCMRI measurements. Four-dimensional PCMRI measurements had much greater CSF velocities compared to CFD simulations (1.4 to 5.6× greater). Four-dimensional PCMRI and CFD both showed anterior and anterolateral dominance of CSF velocities, although this flow feature was more pronounced in 4D PCMRI measurements compared to CFD. CSF flow jets were present near the nerve rootlets and denticulate ligaments (NRDL) in the CFD simulation. Flow jets were visible in the 4D PCMRI measurements, although they were not clearly attributable to nerve rootlets. Inclusion of spinal cord NRDL in the cervical SSS does not fully explain the differences between velocities obtained from 4D PCMRI measurements and CFD simulations.


Assuntos
Líquido Cefalorraquidiano/fisiologia , Simulação por Computador , Hidrodinâmica , Imageamento por Ressonância Magnética , Modelagem Computacional Específica para o Paciente , Malformação de Arnold-Chiari/fisiopatologia , Humanos , Imageamento Tridimensional , Ligamentos/fisiologia , Ligamentos/fisiopatologia , Masculino , Modelos Biológicos , Raízes Nervosas Espinhais/fisiologia , Raízes Nervosas Espinhais/fisiopatologia , Adulto Jovem
9.
J Biomech Eng ; 136(2): 021012, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362680

RESUMO

Diagnosis of Type I Chiari malformation (CMI) is difficult because the most commonly used diagnostic criterion, cerebellar tonsillar herniation (CTH) greater than 3-5 mm past the foramen magnum, has been found to have little correlation with patient symptom severity. Thus, there is a need to identify new objective measurement(s) to help quantify CMI severity. This study investigated longitudinal impedance (LI) as a parameter to assess CMI in terms of impedance to cerebrospinal fluid motion near the craniovertebral junction. LI was assessed in CMI patients (N = 15) and age-matched healthy controls (N = 8) using computational fluid dynamics based on subject-specific magnetic resonance imaging (MRI) measurements of the cervical spinal subarachnoid space. In addition, CTH was measured for each subject. Mean LI in the CMI group (551 ± 66 dyn/cm5) was significantly higher than in controls (220 ± 17 dyn/cm5, p < 0.001). Mean CTH in the CMI group was 9.0 ± 1.1 mm compared to -0.4 ± 0.5 mm in controls. Regression analysis of LI versus CTH found a weak relationship (R2 = 0.46, p < 0.001), demonstrating that CTH was not a good indicator of the impedance to CSF motion caused by cerebellar herniation. These results showed that CSF flow impedance was elevated in CMI patients and that LI provides different information than a standard CTH measurement. Further research is necessary to determine if LI can be useful in CMI patient diagnosis.


Assuntos
Malformação de Arnold-Chiari/diagnóstico , Malformação de Arnold-Chiari/fisiopatologia , Líquido Cefalorraquidiano/fisiologia , Vértebras Cervicais/fisiopatologia , Condutometria/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Malformação de Arnold-Chiari/patologia , Simulação por Computador , Feminino , Humanos , Masculino , Manometria/métodos , Pessoa de Meia-Idade , Modelos Biológicos , Pressão , Reprodutibilidade dos Testes , Reologia/métodos , Sensibilidade e Especificidade , Viscosidade , Adulto Jovem
10.
Sleep Breath ; 17(1): 289-96, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22434361

RESUMO

PURPOSE: Continuous positive airway pressure (CPAP) is the gold standard treatment for obstructive sleep apnea. However, the physiologic impact of CPAP on cerebral blood flow (CBF) is not well established. Ultrasound can be used to estimate CBF, but there is no widespread accepted protocol. We studied the physiologic influence of CPAP on CBF using a method integrating arterial diameter and flow velocity (FV) measurements obtained for each vessel supplying blood to the brain. METHODS: FV and lumen diameter of the left and right internal carotid, vertebral, and middle cerebral arteries were measured using duplex Doppler ultrasound with and without CPAP at 15 cm H(2)O, applied in a random order. Transcutaneous carbon dioxide (PtcCO(2)), heart rate (HR), blood pressure (BP), and oxygen saturation were monitored. Results were compared with a theoretical prediction of CBF change based on the effect of partial pressure of carbon dioxide on CBF. RESULTS: Data were obtained from 23 healthy volunteers (mean ± SD; 12 male, age 25.1 ± 2.6 years, body mass index 21.8 ± 2.0 kg/m(2)). The mean experimental and theoretical CBF decrease under CPAP was 12.5 % (p < 0.001) and 11.9 % (p < 0.001), respectively. The difference between experimental and theoretical CBF reduction was not statistically significant (3.84 ± 79 ml/min, p = 0.40). There was a significant reduction in PtcCO(2) with CPAP (p = <0.001) and a significant increase in mean BP (p = 0.0017). No significant change was observed in SaO(2) (p = 0.21) and HR (p = 0.62). CONCLUSION: Duplex Doppler ultrasound measurements of arterial diameter and FV allow for a noninvasive bedside estimation of CBF. CPAP at 15 cm H(2)O significantly decreased CBF in healthy awake volunteers. This effect appeared to be mediated predominately through the hypocapnic vasoconstriction coinciding with PCO(2) level reduction. The results suggest that CPAP should be used cautiously in patients with unstable cerebral hemodynamics.


Assuntos
Encéfalo/irrigação sanguínea , Pressão Positiva Contínua nas Vias Aéreas , Vigília/fisiologia , Adulto , Pressão Sanguínea/fisiologia , Ecoencefalografia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Valores de Referência , Fluxo Sanguíneo Regional/fisiologia , Ultrassonografia Doppler Transcraniana , Resistência Vascular/fisiologia , Adulto Jovem
11.
Am J Physiol Heart Circ Physiol ; 302(7): H1492-509, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22268106

RESUMO

Coupling of the cardiovascular and cerebrospinal fluid (CSF) system is considered to be important to understand the pathophysiology of cerebrovascular and craniospinal disease and intrathecal drug delivery. A coupled cardiovascular and CSF system model was designed to examine the relation of spinal cord (SC) blood flow (SCBF) and CSF pulsations along the spinal subarachnoid space (SSS). A one-dimensional (1-D) cardiovascular tree model was constructed including a simplified SC arterial network. Connection between the cardiovascular and CSF system was accomplished by a transfer function based on in vivo measurements of CSF and cerebral blood flow. A 1-D tube model of the SSS was constructed based on in vivo measurements in the literature. Pressure and flow throughout the cardiovascular and CSF system were determined for different values of craniospinal compliance. SCBF results indicated that the cervical, thoracic, and lumbar SC each had a signature waveform shape. The cerebral blood flow to CSF transfer function reproduced an in vivo-like CSF flow waveform. The 1-D tube model of the SSS resulted in a distribution of CSF pressure and flow and a wave speed that were similar to those in vivo. The SCBF to CSF pulse delay was found to vary a great degree along the spine depending on craniospinal compliance and vascular anatomy. The properties and anatomy of the SC arterial network and SSS were found to have an important impact on pressure and flow and perivascular fluid movement to the SC. Overall, the coupled model provides predictions about the flow and pressure environment in the SC and SSS. More detailed measurements are needed to fully validate the model.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Líquido Cefalorraquidiano/fisiologia , Hidrodinâmica , Adulto , Algoritmos , Arteríolas/fisiologia , Pressão Sanguínea/fisiologia , Artérias Cerebrais/anatomia & histologia , Artérias Cerebrais/fisiologia , Pressão do Líquido Cefalorraquidiano/fisiologia , Circulação Cerebrovascular/fisiologia , Simulação por Computador , Humanos , Hidrocefalia/fisiopatologia , Injeções Espinhais , Imageamento por Ressonância Magnética , Modelos Anatômicos , Fluxo Sanguíneo Regional/fisiologia , Medula Espinal/anatomia & histologia , Medula Espinal/irrigação sanguínea , Medula Espinal/fisiologia , Estenose Espinal/fisiopatologia , Espaço Subaracnóideo/fisiologia
12.
Eur Radiol ; 22(9): 1860-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22569996

RESUMO

OBJECTIVE: To analyse cerebrospinal fluid (CSF) hydrodynamics in patients with Chiari type I malformation (CM) with and without syringomyelia using 4D magnetic resonance (MR) phase contrast (PC) flow imaging. METHODS: 4D-PC CSF flow data were acquired in 20 patients with CM (12 patients with presyrinx/syrinx). Characteristic 4D-CSF flow patterns were identified. Quantitative CSF flow parameters were assessed at the craniocervical junction and the cervical spinal canal and compared with healthy volunteers and between patients with and without syringomyelia. RESULTS: Compared with healthy volunteers, 17 CM patients showed flow abnormalities at the craniocervical junction in the form of heterogeneous flow (n = 3), anterolateral flow jets (n = 14) and flow vortex formation (n = 5), most prevalent in patients with syringomyelia. Peak flow velocities at the craniocervical junction were significantly increased in patients (-15.5 ± 11.3 vs. -4.7 ± 0.7 cm/s in healthy volunteers, P < 0.001). At the level of C1, maximum systolic flow was found to be significantly later in the cardiac cycle in patients (30.8 ± 10.3 vs. 22.7 ± 4.1%, P < 0.05). CONCLUSIONS: 4D-PC flow imaging allowed comprehensive analysis of CSF flow in patients with Chiari I malformation. Alterations of CSF hydrodynamics were most pronounced in patients with syringomyelia.


Assuntos
Malformação de Arnold-Chiari/patologia , Malformação de Arnold-Chiari/fisiopatologia , Líquido Cefalorraquidiano/citologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Reologia/métodos , Siringomielia/patologia , Siringomielia/fisiopatologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
13.
J Biomech Eng ; 134(4): 041007, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22667682

RESUMO

The driving force that causes enlargement of the ventricles remains unclear in case of normal pressure hydrocephalus (NPH). Both healthy and NPH brain conditions are characterized by a low transparenchymal pressure drop, typically 1 mm Hg. The present paper proposes an analytical model for normal and NPH brains using Darcy's and Biot's equations and simplifying the brain geometry to a hollow sphere with an internal and external radius. Self-consistent solutions for the large deformation problem that is associated with large ventricle dilation are presented and the notion of equilibrium or stable ventricle position is highlighted for both healthy and NPH conditions. The influence of different biomechanical parameters on the stable ventricle geometry is assessed and it is shown that both CSF seepage through the ependyma and parenchymal permeability play a key role. Although very simple, the present model is able to predict the onset and development of NPH conditions as a deviation from healthy conditions.


Assuntos
Ventrículos Cerebrais/fisiologia , Ventrículos Cerebrais/fisiopatologia , Saúde , Hidrocefalia de Pressão Normal/fisiopatologia , Modelos Biológicos , Complacência (Medida de Distensibilidade) , Humanos , Pressão Intracraniana
14.
Front Neuroimaging ; 1: 879098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555174

RESUMO

Background: Understanding the relationship between cerebrospinal fluid (CSF) dynamics and intrathecal drug delivery (ITDD) injection parameters is essential to improve treatment of central nervous system (CNS) disorders. Methods: An anatomically detailed in vitro model of the complete CSF system was constructed. Patient-specific cardiac- and respiratory-induced CSF oscillations were input to the model in the subarachnoid space and within the ventricles. CSF production was input at the lateral ventricles and CSF absorption at the superior sagittal sinus. A model small molecule simulated drug product containing fluorescein was imaged within the system over a period of 3-h post-lumbar ITDD injections and used to quantify the impact of (a) bolus injection volume and rate, (b) post-injection flush volume, rate, and timing, (c) injection location, and (d) type of injection device. For each experiment, neuraxial distribution of fluorescein in terms of spatial temporal concentration, area-under-the-curve (AUC), and percent of injected dose (%ID) to the brain was quantified at a time point 3-h post-injection. Results: For all experiments conducted with ITDD administration in the lumbar spine, %ID to the brain did not exceed 11.6% at a time point 3-h post-injection. Addition of a 12 mL flush slightly increased solute transport to the brain up to +3.9%ID compared to without a flush (p < 0.01). Implantation of a lumbar catheter with the tip at an equivalent location to the lumbar placed needle, but with rostral tip orientation, resulted in a small improvement of 1.5%ID to the brain (p < 0.05). An increase of bolus volume from 5 to 20 mL improved solute transport to the brain from 5.0 to 6.3%ID, but this improvement was not statistically significant. Increasing bolus injection rate from 5 to 13.3 mL/min lacked improvement of solute transport to the brain, with a value of 6.3 compared to 5.7%ID. Conclusion: The in vitro modeling approach allowed precisely controlled and repeatable parametric investigation of ITDD injection protocols and devices. In combination, the results predict that parametric changes in lumbar spine ITDD-injection related parameters and devices can alter %ID to the brain and be tuned to optimize therapeutic benefit to CNS targets.

15.
Fluids Barriers CNS ; 19(1): 8, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090516

RESUMO

BACKGROUND: Intrathecal drug delivery has a significant role in pain management and central nervous system (CNS) disease therapeutics. A fluid-physics based tool to assist clinicians in choosing specific drug doses to the spine or brain may help improve treatment schedules. METHODS: This study applied computational fluid dynamics (CFD) and in vitro model verification to assess intrathecal drug delivery in an anatomically idealized model of the human CSF system with key anatomic features of the CNS. Key parameters analyzed included the role of (a) injection location including lumbar puncture (LP), cisterna magna (CM) and intracerebroventricular (ICV), (b) LP injection rate, injection volume, and flush volume, (c) physiologic factors including cardiac-induced and deep respiration-induced CSF stroke volume increase. Simulations were conducted for 3-h post-injection and used to quantify spatial-temporal tracer concentration, regional area under the curve (AUC), time to maximum concentration (Tmax), and maximum concentration (Cmax), for each case. RESULTS: CM and ICV increased AUC to brain regions by ~ 2 logs compared to all other simulations. A 3X increase in bolus volume and addition of a 5 mL flush both increased intracranial AUC to the brain up to 2X compared to a baseline 5 mL LP injection. In contrast, a 5X increase in bolus rate (25 mL/min) did not improve tracer exposure to the brain. An increase in cardiac and respiratory CSF movement improved tracer spread to the brain, basal cistern, and cerebellum up to ~ 2 logs compared to the baseline LP injection. CONCLUSION: The computational modeling approach provides ability to conduct in silico trials representative of CSF injection protocols. Taken together, the findings indicate a strong potential for delivery protocols to be optimized to reach a target region(s) of the spine and/or brain with a needed therapeutic dose. Parametric modification of bolus rate/volume and flush volume was found to have impact on tracer distribution; albeit to a smaller degree than injection location, with CM and ICV injections resulting in greater therapeutic dose to brain regions compared to LP. CSF stroke volume and frequency both played an important role and may potentially have a greater impact than the modest changes in LP injection protocols analyzed such as bolus rate, volume, and flush.


Assuntos
Líquido Cefalorraquidiano , Cisterna Magna , Sistemas de Liberação de Medicamentos , Injeções Intraventriculares , Injeções Espinhais , Modelos Teóricos , Simulação por Computador , Humanos , Hidrodinâmica
16.
J Appl Physiol (1985) ; 133(6): 1349-1355, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326472

RESUMO

Spaceflight associated neuro-ocular syndrome (SANS) is associated with acquired optic disc edema, hyperopia, and posterior globe flattening in some astronauts during long-duration spaceflight possibly due to the headward fluid redistribution in microgravity. The goal of this study was to assess whether strict head-down tilt (HDT) bed rest as a spaceflight analog would produce globe flattening and whether centrifugation could prevent these changes. Twenty-four healthy subjects separated into three groups underwent 60 days of strict 6° HDT bed rest: one control group with no countermeasure (n = 8) and two countermeasure groups exposed to 30 min daily of short-arm centrifugation as a means of artificial gravity (AG), either intermittent (iAG, n = 8) or continuous (cAG, n = 8). Magnetic resonance images (MRI) were collected at baseline, HDT-day 14, HDT-day 52, and 3 days after bed rest. An automated method was applied to quantify posterior globe volume displacement compared with baseline scans. On average, subjects showed an increasing degree of globe volume displacement with bed rest duration (means ± SE: 1.41 ± 1.01 mm3 on HDT14 and 4.04 ± 1.19 mm3 on HDT52) that persisted post-bed rest (5.51 ± 1.26 mm3). Application of 30 min daily AG did not have a significant impact on globe volume displacement (P = 0.42 for cAG and P = 0.93 for iAG compared with control). These results indicate that strict 6° HDT bed rest produced displacement of the posterior globe with a trend of increasing displacement with longer duration that was not prevented by daily 30 min exposure to AG.NEW & NOTEWORTHY Head-down tilt (HDT) bed rest is commonly used as a spaceflight analog for investigating spaceflight associated neuro-ocular syndrome (SANS). Posterior ocular globe flattening has been identified in astronauts with SANS but until now has not been investigated during HDT bed rest. In this study, posterior ocular globe volume displacement was quantified before, during, and after HDT bed rest and countermeasures were tested for their potential to reduce the degree of globe flattening.


Assuntos
Gravidade Alterada , Voo Espacial , Humanos , Decúbito Inclinado com Rebaixamento da Cabeça , Repouso em Cama , Astronautas , Imageamento por Ressonância Magnética
17.
Fluids Barriers CNS ; 18(1): 12, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736664

RESUMO

BACKGROUND: Phase contrast magnetic resonance imaging, PC MRI, is a valuable tool allowing for non-invasive quantification of CSF dynamics, but has lacked adoption in clinical practice for Chiari malformation diagnostics. To improve these diagnostic practices, a better understanding of PC MRI based measurement agreement, repeatability, and reproducibility of CSF dynamics is needed. METHODS: An anatomically realistic in vitro subject specific model of a Chiari malformation patient was scanned three times at five different scanning centers using 2D PC MRI and 4D Flow techniques to quantify intra-scanner repeatability, inter-scanner reproducibility, and agreement between imaging modalities. Peak systolic CSF velocities were measured at nine axial planes using 2D PC MRI, which were then compared to 4D Flow peak systolic velocity measurements extracted at those exact axial positions along the model. RESULTS: Comparison of measurement results showed good overall agreement of CSF velocity detection between 2D PC MRI and 4D Flow (p = 0.86), fair intra-scanner repeatability (confidence intervals ± 1.5 cm/s), and poor inter-scanner reproducibility. On average, 4D Flow measurements had a larger variability than 2D PC MRI measurements (standard deviations 1.83 and 1.04 cm/s, respectively). CONCLUSION: Agreement, repeatability, and reproducibility of 2D PC MRI and 4D Flow detection of peak CSF velocities was quantified using a patient-specific in vitro model of Chiari malformation. In combination, the greatest factor leading to measurement inconsistency was determined to be a lack of reproducibility between different MRI centers. Overall, these findings may help lead to better understanding for application of 2D PC MRI and 4D Flow techniques as diagnostic tools for CSF dynamics quantification in Chiari malformation and related diseases.


Assuntos
Malformação de Arnold-Chiari/líquido cefalorraquidiano , Malformação de Arnold-Chiari/diagnóstico por imagem , Líquido Cefalorraquidiano/fisiologia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Pré-Escolar , Humanos , Hidrodinâmica , Metanálise como Assunto , Modelos Anatômicos , Reprodutibilidade dos Testes , Literatura de Revisão como Assunto
18.
J R Soc Interface ; 18(177): 20200920, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33906382

RESUMO

Spaceflight is known to cause ophthalmic changes in a condition known as spaceflight-associated neuro-ocular syndrome (SANS). It is hypothesized that SANS is caused by cephalad fluid shifts and potentially mild elevation of intracranial pressure (ICP) in microgravity. Head-down tilt (HDT) studies are a ground-based spaceflight analogue to create cephalad fluid shifts. Here, we developed non-invasive magnetic resonance imaging (MRI)-based techniques to quantify ophthalmic structural changes under acute 15° HDT. We specifically quantified: (i) change in optic nerve sheath (ONS) and optic nerve (ON) cross-sectional area, (ii) change in ON deviation, an indicator of ON tortuosity, (iii) change in vitreous chamber depth, and (iv) an estimated ONS Young's modulus. Under acute HDT, ONS cross-sectional area increased by 4.04 mm2 (95% CI 2.88-5.21 mm2, p < 0. 000), while ON cross-sectional area remained nearly unchanged (95% CI -0.12 to 0.43 mm2, p = 0.271). ON deviation increased under HDT by 0.20 mm (95% CI 0.08-0.33 mm, p = 0.002). Vitreous chamber depth decreased under HDT by -0.11 mm (95% CI -0.21 to -0.03 mm, p = 0.009). ONS Young's modulus was estimated to be 85.0 kPa. We observed a significant effect of sex and BMI on ONS parameters, of interest since they are known risk factors for idiopathic intracranial hypertension. The tools developed herein will be useful for future analyses of ON changes in various conditions.


Assuntos
Decúbito Inclinado com Rebaixamento da Cabeça , Ausência de Peso , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Simulação de Ausência de Peso
19.
Eye (Lond) ; 35(7): 1869-1878, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33514895

RESUMO

BACKGROUND/OBJECTIVES: Spaceflight associated neuro-ocular syndrome (SANS), a health risk related to long-duration spaceflight, is hypothesized to result from a headward fluid shift that occurs with the loss of hydrostatic pressure gradients in weightlessness. Shifts in the vascular and cerebrospinal fluid compartments alter the mechanical forces at the posterior eye and lead to flattening of the posterior ocular globe. The goal of the present study was to develop a method to quantify globe flattening observed by magnetic resonance imaging after spaceflight. SUBJECTS/METHODS: Volumetric displacement of the posterior globe was quantified in 10 astronauts at 5 time points after spaceflight missions of ~6 months. RESULTS: Mean globe volumetric displacement was 9.88 mm3 (95% CI 4.56-15.19 mm3, p < 0.001) on the first day of assessment after the mission (R[return]+ 1 day); 9.00 mm3 (95% CI 3.73-14.27 mm3, p = 0.001) at R + 30 days; 6.53 mm3 (95% CI 1.24-11.83 mm3, p < 0.05) at R + 90 days; 4.45 mm3 (95% CI -0.96 to 9.86 mm3, p = 0.12) at R + 180 days; and 7.21 mm3 (95% CI 1.82-12.60 mm3, p < 0.01) at R + 360 days. CONCLUSIONS: There was a consistent inward displacement of the globe at the optic nerve, which had only partially resolved 1 year after landing. More pronounced globe flattening has been observed in previous studies of astronauts; however, those observations lacked quantitative measures and were subjective in nature. The novel automated method described here allows for detailed quantification of structural changes in the posterior globe that may lead to an improved understanding of SANS.


Assuntos
Voo Espacial , Ausência de Peso , Astronautas , Humanos , Pressão Intracraniana , Imageamento por Ressonância Magnética , Ausência de Peso/efeitos adversos
20.
J Biomech Eng ; 132(11): 111007, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21034148

RESUMO

Full explanation for the pathogenesis of syringomyelia (SM), a neuropathology characterized by the formation of a cystic cavity (syrinx) in the spinal cord (SC), has not yet been provided. It has been hypothesized that abnormal cerebrospinal fluid (CSF) pressure, caused by subarachnoid space (SAS) flow blockage (stenosis), is an underlying cause of syrinx formation and subsequent pain in the patient. However, paucity in detailed in vivo pressure data has made theoretical explanations for the syrinx difficult to reconcile. In order to understand the complex pressure environment, four simplified in vitro models were constructed to have anatomical similarities with post-traumatic SM and Chiari malformation related SM. Experimental geometry and properties were based on in vivo data and incorporated pertinent elements such as a realistic CSF flow waveform, spinal stenosis, syrinx, flexible SC, and flexible spinal column. The presence of a spinal stenosis in the SAS caused peak-to-peak cerebrospinal fluid CSF pressure fluctuations to increase rostral to the stenosis. Pressure with both stenosis and syrinx present was complex. Overall, the interaction of the syrinx and stenosis resulted in a diastolic valve mechanism and rostral tensioning of the SC. In all experiments, the blockage was shown to increase and dissociate SAS pressure, while the axial pressure distribution in the syrinx remained uniform. These results highlight the importance of the properties of the SC and spinal SAS, such as compliance and permeability, and provide data for comparison with computational models. Further research examining the influence of stenosis size and location, and the importance of tissue properties, is warranted.


Assuntos
Modelos Neurológicos , Estenose Espinal/líquido cefalorraquidiano , Estenose Espinal/complicações , Espaço Subaracnóideo/fisiopatologia , Siringomielia/líquido cefalorraquidiano , Siringomielia/etiologia , Malformação de Arnold-Chiari/líquido cefalorraquidiano , Malformação de Arnold-Chiari/complicações , Malformação de Arnold-Chiari/fisiopatologia , Fenômenos Biomecânicos , Pressão do Líquido Cefalorraquidiano/fisiologia , Complacência (Medida de Distensibilidade)/fisiologia , Elasticidade , Humanos , Técnicas In Vitro , Permeabilidade , Estenose Espinal/fisiopatologia , Siringomielia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA