Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569899

RESUMO

Long COVID-19 syndrome appears after Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) infection with acute damage to microcapillaries, microthrombi, and endothelialitis. However, the mechanisms involved in these processes remain to be elucidated. All blood vessels are lined with a monolayer of endothelial cells called vascular endothelium, which provides a the major function is to prevent coagulation. A component of endothelial cell junctions is VE-cadherin, which is responsible for maintaining the integrity of the vessels through homophilic interactions of its Ca++-dependent adhesive extracellular domain. Here we provide the first evidence that VE-cadherin is a target in vitro for ACE2 cleavage because its extracellular domain (hrVE-ED) contains two amino acid sequences for ACE2 substrate recognition at the positions 256P-F257 and 321PMKP-325L. Indeed, incubation of hrVE-ED with the active ectopeptidase hrACE2 for 16 hrs in the presence of 10 µM ZnCl2 showed a dose-dependent (from 0.2 ng/µL to 2 ng/µL) decrease of the VE-cadherin immunoreactive band. In vivo, in the blood from patients having severe COVID-19 we detected a circulating form of ACE2 with an apparent molecular mass of 70 kDa, which was barely detectable in patients with mild COVID-19. Of importance, in the patients with severe COVID-19 disease, the presence of three soluble fragments of VE-cadherin (70, 62, 54 kDa) were detected using the antiEC1 antibody while only the 54 kDa fragment was present in patients with mild disease. Altogether, these data clearly support a role for ACE2 to cleave VE-cadherin, which leads to potential biomarkers of SARS-CoV-2 infection related with the vascular disease in "Long COVID-19".


Assuntos
COVID-19 , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2/metabolismo , Caderinas/metabolismo , Endotélio Vascular/metabolismo
2.
Langmuir ; 38(49): 15026-15037, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36459683

RESUMO

The use of liposomes as drug delivery systems emerged in the last decades in view of their capacity and versatility to deliver a variety of therapeutic agents. By means of small-angle neutron scattering (SANS), we performed a detailed characterization of liposomes containing outer membrane protein F (OprF), the main porin of the Pseudomonas aeruginosa bacterium outer membrane. These OprF-liposomes are the basis of a novel vaccine against this antibiotic-resistant bacterium, which is one of the main hospital-acquired pathogens and causes each year a significant number of deaths. SANS data were analyzed by a specific model we created to quantify the crucial information about the structure of the liposome containing OprF, including the lipid bilayer structure, the amount of protein in the lipid bilayer, the average protein localization, and the effect of the protein incorporation on the lipid bilayer. Quantification of such structural information is important to enhance the design of liposomal delivery systems for therapeutic applications.


Assuntos
Proteínas de Bactérias , Sistemas de Liberação de Medicamentos , Lipossomos , Nanoestruturas , Porinas , Bicamadas Lipídicas/química , Lipossomos/química , Porinas/química , Espalhamento a Baixo Ângulo , Proteínas de Bactérias/química , Nanoestruturas/química
3.
Langmuir ; 37(30): 8908-8923, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34286589

RESUMO

A key to the development of lipid membrane-based devices is a fundamental understanding of how the molecular structure of the lipid bilayer membrane is influenced by the type of lipids used to build the membrane. This is particularly important when membrane proteins are included in these devices since the precise lipid environment affects the ability to incorporate membrane proteins and their functionality. Here, we used neutron reflectometry to investigate the structure of tethered bilayer lipid membranes and to characterize the incorporation of the NhaA sodium proton exchanger in the bilayer. The lipid membranes were composed of two lipids, dioleoyl phosphatidylcholine and cardiolipin, and were adsorbed on gold and silicon substrates using two different tethering architectures based on functionalized oligoethylene glycol molecules of different lengths. In all of the investigated samples, the addition of cardiolipin caused distinct structural rearrangement including crowding of ethylene glycol groups of the tethering molecules in the inner head region and a thinning of the lipid tail region. The incorporation of NhaA in the tethered bilayers following two different protocols is quantified, and the way protein incorporation modulates the structural properties of these membranes is detailed.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Cardiolipinas , Ouro , Silício
4.
Nanomedicine ; 31: 102308, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011391

RESUMO

We demonstrate that low-frequency ultrasonic stimulation applied directly to a hydrogel, at energy levels below the cavitation threshold, can control the release of a therapeutic molecule. The hydrogel that contained the molecules was enclosed within a hollow acoustic horn. The harmonic modes in the acoustic horn combined with the physical gel structure to induce a flashing ratchet that released all of the retained molecules in less than 90 s at an intensity of 1.5 W cm-2 (applied energy of 135 J cm-2, ultrasound center frequency of 27.9 ±â€¯1.5 kHz). In contrast, ultrasound is used currently as a remote stimulus for drug-delivery systems, at energy levels above the cavitation threshold. The low-energy flashing ratchet approach that we describe is applicable to drive the diffusion of molecules in a range of gels that are ubiquitous in biomedical systems, including for example in drug delivery, molecule identification and separation systems.


Assuntos
Hidrogéis/química , Ultrassonografia/métodos , Acústica , Difusão
5.
Biochem Soc Trans ; 48(3): 867-879, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32539103

RESUMO

In 1968 Wolfson et al. published the concept for producing energy inside the body using catalytic electrodes exposed to the body fluid as an electrolyte and utilising naturally occurring fuels such as glucose. Since then, the technology has advanced to enhance the levels of power using enzymes immobilised within three-dimensional bioelectrodes that are nanostructured. Current research in the field of enzymatic fuel cells is directed toward applying electrochemical and nanostructural expertise to increase the energy density, to increase the power density, to increase the operational stability, and to increase the voltage output. Nonetheless, biocompatibility remains the major challenge for increasing the life-time for implanted enzymatic biofuel cells. Here, we discuss the current issues for biocompatibility and suggest directions to enhance the design of biofuel cells so as to increase the life-time of implantation whilst maintaining sufficient performance to provide power for implanted medical devices.


Assuntos
Materiais Biocompatíveis , Fontes de Energia Bioelétrica , Nanoestruturas/química , Células 3T3-L1 , Animais , Bactérias/metabolismo , Catálise , Quitosana/química , Eletroquímica , Eletrodos , Eletrólitos , Glucose , Camundongos , Nanotecnologia
6.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752076

RESUMO

Responsible for tularemia, Francisella tularensis bacteria are highly infectious Gram-negative, category A bioterrorism agents. The molecular mechanisms for their virulence and resistance to antibiotics remain largely unknown. FupA (Fer Utilization Protein), a protein mediating high-affinity transport of ferrous iron across the outer membrane, is associated with both. Recent studies demonstrated that fupA deletion contributed to lower F. tularensis susceptibility towards fluoroquinolones, by increasing the production of outer membrane vesicles. Although the paralogous FupB protein lacks such activity, iron transport capacity and a role in membrane stability were reported for the FupA/B chimera, a protein found in some F. tularensis strains, including the live vaccine strain (LVS). To investigate the mode of action of these proteins, we purified recombinant FupA, FupB and FupA/B proteins expressed in Escherichia coli and incorporated them into mixed lipid bilayers. We examined the porin-forming activity of the FupA/B proteoliposomes using a fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid, disodium salt (ANTS) probe. Using electrophysiology on tethered bilayer lipid membranes, we confirmed that the FupA/B fusion protein exhibits pore-forming activity with large ionic conductance, a property shared with both FupA and FupB. This demonstration opens up new avenues for identifying functional genes, and novel therapeutic strategies against F. tularensis infections.


Assuntos
Francisella tularensis/genética , Ferro/metabolismo , Porinas/genética , Tularemia/genética , Proteínas de Bactérias/genética , Vacinas Bacterianas , Transporte Biológico/genética , Transporte Biológico/imunologia , Armas Biológicas , Escherichia coli/genética , Fluoroquinolonas/efeitos adversos , Fluoroquinolonas/uso terapêutico , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidade , Humanos , Porinas/metabolismo , Tularemia/tratamento farmacológico , Tularemia/microbiologia
7.
Langmuir ; 33(38): 9988-9996, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28845995

RESUMO

OprF has a central role in Pseudomonas aeruginosa virulence and thus provides a putative target for either vaccines or antibiotic cofactors that could overcome the bacterium's natural resistance to antibiotics. Here we describe a procedure to optimize the production of highly pure and functional OprF porins that are then incorporated into a tethered lipid bilayer. This is a stable biomimetic system that provides the capability to investigate structural aspects and function of OprF using and neutron reflectometry and electrical impedance spectroscopy. The recombinant OprF produced using the optimized cell-free procedure yielded a quantity of between 0.5 to 1.0 mg/mL with a purity ranging from 85 to 91% in the proteoliposomes. The recombinant OprF is capable of binding IFN-γ and is correctly folded in the proteoliposomes. Because OprF proteins form pores the biomimetic system allowed the measurement of OprF conductance using impedance spectroscopy. The neutron reflectometry measurements showed that the OprF protein is incorporated into the lipid bilayer but with parts of the protein in both the regions above and below the lipid bilayer. Those structural aspects are coherent with the current assumed structure of a transmembrane N-terminal domain composed by eight stranded beta-barrels and a globular C-terminal domain located in the periplasm. Currently there are no crystal structures available for OprF. The experimental model system that we describe provides a basis for further fundamental studies of OprF and particularly for the ongoing biotechnological development of OprF as a target for antibacterial drugs.


Assuntos
Pseudomonas aeruginosa , Fenômenos Biofísicos , Bicamadas Lipídicas , Porinas , Conformação Proteica
8.
Eur Phys J E Soft Matter ; 39(12): 123, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27966072

RESUMO

Tethered lipid bilayer membranes (tBLM) are planar membranes composed of free lipids and molecules tethered to a solid planar substrate providing a useful model of biological membranes for a wide range of biophysical studies and biotechnological applications. The properties of the tBLM depend on the free lipids and on the chemistry of the tethering molecules. We present a nanoscale characterization of a tBLM composed of deuterated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (d-DMPC) free lipids, benzyl disulfide undecaethylene glycol phytanol (DLP) tethering molecules, and benzyl disulfiide tetraethylene glycol polar spacer molecules (PSM) used to control the areal density of tethering molecules through coadsorption. The use of selected isotopic substitution provides a way to distinguish the conformation and location of the tethered lipids from the free lipids and to elucidate how the two components influence the structure of the tBLM. These findings provide useful information to optimise the insertion of transmembrane proteins into the tethered bilayer system.


Assuntos
Ouro/química , Bicamadas Lipídicas/química , Nanoestruturas/química , Materiais Biomiméticos/química , Membrana Celular/química , Dimiristoilfosfatidilcolina/química , Conformação Molecular
9.
Prep Biochem Biotechnol ; 46(6): 546-51, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26443900

RESUMO

The mitochondrial voltage-dependent anion channel (VDAC) is a pivotal protein since it provides the major transport pathway between the cytosol and the mitochondrial intermembrane space and it is implicated in cell apoptosis by functioning as a gatekeeper for the trafficking of mitochondrial death molecules. VDAC is a beta-barrel channel with a large conductance, and we use it as a model transport protein for the design of biomimetic systems. To overcome the limitations of classical overexpression methods for producing and purifying membrane proteins (MPs) we describe here the use of an optimized cell-free system. In a one-step reaction VDAC is obtained directly integrated into liposomes and purified by ultracentrifugation. We then combine proteoliposomes with different bilayers models in order to validate VDAC insertion and functionality. This VDAC biomimetic model is the first example validating the use of a cell-free expression system for production of MPs into liposomes and tethered bilayers as a toolbox to build a wide range of biomimetic devices.


Assuntos
Biomimética , Lipossomos , Membranas Artificiais , Canais de Ânion Dependentes de Voltagem/metabolismo , Western Blotting , Sistema Livre de Células , Dicroísmo Circular , Clonagem Molecular , Microscopia Imunoeletrônica , Canais de Ânion Dependentes de Voltagem/genética
10.
Biomater Sci ; 12(7): 1738-1749, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38372031

RESUMO

Immediate care of skin wounds and burns is essential to repair this mechanical and chemical barrier to infections. Hydrogels have become one of the standard methods for wound care. Here, gelatine-collagen photo-crosslinkable matrixes or hydrogels were manufactured by two-photon polymerization (TPP) or one-photon UV exposure using a Digital Light Processing (DLP) setup. Both techniques are able to construct matrixes from computer-aided design models, which is important for future clinical applications in which wound dressings should be customized. Although TPP can mimic the 3D dermo-epidermal junction with a high spatial resolution (i.e., ∼6 µm3), the manufacturing time was too slow to produce large wound dressings. Therefore, a DLP setup was explored in this study to fabricate large 2D matrixes of several cm2 using the same photo-resist as for TPP, except for the photoinitiator. The fibroblast viability, adherence, and proliferation were analysed in time on both 3D and 2D matrixes in vitro using two-photon microscopy. For both types of matrixes, the adherence and proliferation of fibroblasts (3T3-NIH) were optimal for stiff structures with a Young's modulus of 191 ± 35 kPa compared to softer matrixes of 37 ± 12 kPa. Fibroblast showed complete confluence on Day 14 after seeding on these matrixes, which may create the granulation tissue composed of fibronectin, collagen, and various proteoglycans in the future dermis before repair of the epidermis and disintegrating of their host matrix. For the monitoring of this repair, gelatine-collagen matrixes can easily incorporate bio-optical sensors for the simultaneous monitoring of inflammation processes and wound healing in time.


Assuntos
Gelatina , Pele , Colágeno , Regeneração , Hidrogéis
11.
Anticancer Res ; 42(10): 4689-4700, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36191998

RESUMO

BACKGROUND/AIM: A growing body of research is contributing to the development of three-dimensional (3D) tissue models to close the gap between two-dimensional (2D) cell culture and animal models. Here, we report fundamental studies to confirm the modification of vascular endothelial (VE)-cadherin by a tumor microenvironment using 2D and 3D in vitro models of triple-negative breast cancer cells co-cultured with endothelial cells. MATERIALS AND METHODS: Breast cancer cells were cultivated as a monolayer (2D) on plates for 5 days or as microtumor spheroids (3D) with endothelial cells for up to 6 days. Phosphotyrosine-containing protein panels were analyzed in both cell types and upon co-culture. Microtumor spheroid size was evaluated via phase contrast microscopy. The content of VE-cadherin and phospho-VE-cadherin was determined. The effect of microtumor spheroid on the capillary network formed by endothelial cells was quantified by ImageJ Angiogenesis Analyzer. Sunitinib was used to determine drug efficacy in this model. RESULTS: The activity of signaling pathways in endothelial cells, including phosphorylation of Y685-VE-cadherin, was increased by the presence of breast cancer cells. In the 3D co-culture system, we established a ratio of the two cell types which allowed viability for 6 days. As a proof-of-concept of the 3D co-culture system for the process of drug discovery and development, we used the system to quantify the efficacy of sunitinib on the phosphorylation of VE-cadherin. CONCLUSION: In summary, we established 2D and 3D breast cancer-endothelial cell test systems compatible for detection of minimally tyrosine-phosphorylated proteins including VE-cadherin. The systems are capable of quantifying the effect of drugs on a tissue model of angiogenesis. This is a step towards developing tools for drug-efficacy testing that do not rely on live animals.


Assuntos
Caderinas , Células Endoteliais , Animais , Antígenos CD , Caderinas/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Neovascularização Patológica/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Sunitinibe/farmacologia , Tirosina/metabolismo
12.
Chemosphere ; 288(Pt 1): 132364, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600007

RESUMO

The need for personal protective equipment increased exponentially in response to the Covid-19 pandemic. To cope with the mask shortage during springtime 2020, a French consortium was created to find ways to reuse medical and respiratory masks in healthcare departments. The consortium addressed the complex context of the balance between cleaning medical masks in a way that maintains their safety and functionality for reuse, with the environmental advantage to manage medical disposable waste despite the current mask designation as single-use by the regulatory frameworks. We report a Workflow that provides a quantitative basis to determine the safety and efficacy of a medical mask that is decontaminated for reuse. The type IIR polypropylene medical masks can be washed up to 10 times, washed 5 times and autoclaved 5 times, or washed then sterilized with radiations or ethylene oxide, without any degradation of their filtration or breathability properties. There is loss of the anti-projection properties. The Workflow rendered the medical masks to comply to the AFNOR S76-001 standard as "type 1 non-sanitory usage masks". This qualification gives a legal status to the Workflow-treated masks and allows recommendation for the reuse of washed medical masks by the general population, with the significant public health advantage of providing better protection than cloth-tissue masks. Additionally, such a legal status provides a basis to perform a clinical trial to test the masks in real conditions, with full compliance with EN 14683 norm, for collective reuse. The rational reuse of medical mask and their end-of-life management is critical, particularly in pandemic periods when decisive turns can be taken. The reuse of masks in the general population, in industries, or in hospitals (but not for surgery) has significant advantages for the management of waste without degrading the safety of individuals wearing reused masks.


Assuntos
COVID-19 , Pandemias , Humanos , Máscaras , Equipamento de Proteção Individual , SARS-CoV-2
13.
Life Sci Alliance ; 4(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33972378

RESUMO

Pseudomonas aeruginosa is the second-leading cause of nosocomial infections and pneumonia in hospitals. Because of its extraordinary capacity for developing resistance to antibiotics, treating infections by Pseudomonas is becoming a challenge, lengthening hospital stays, and increasing medical costs and mortality. The outer membrane protein OprF is a well-conserved and immunogenic porin playing an important role in quorum sensing and in biofilm formation. Here, we used a bacterial cell-free expression system to reconstitute OprF under its native forms in liposomes and we demonstrated that the resulting OprF proteoliposomes can be used as a fully functional recombinant vaccine against P. aeruginosa Remarkably, we showed that our system promotes the folding of OprF into its active open oligomerized state as well as the formation of mega-pores. Our approach thus represents an easy and efficient way for producing bacterial membrane antigens exposing native epitopes for vaccine purposes.


Assuntos
Proteínas de Bactérias/imunologia , Engenharia de Proteínas/métodos , Pseudomonas aeruginosa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Epitopos/imunologia , Expressão Gênica/genética , Lipossomos/farmacologia , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Vacinas/imunologia
14.
Yearb Med Inform ; 29(1): 247-252, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32303096

RESUMO

OBJECTIVES: The Grenoble (France) Master's degree in health includes 17 sub-specialty programs, 120 separate teaching units (TUs) and caters for up to 400 students per year. We present the pedagogical transition to blended learning based on flipped classroom initiated in 2010 to overcome the pedagogical limitations of classical lectures. METHODS: The pedagogical organization of each TU is based on the weekly and sequential implementation of five sequences. The first three sequences comprise the learning stages of (1) self-learning on knowledge capsules, (2) interactive on-line questions and votes of interest, and (3) interactive on-site training and explanation meetings. The last two sequences include the evaluation stages with (4) positioning tests, and (5) an anonymous evaluation of the TU allowing access to personalized follow-ups. This pedagogical sequence is completed with a final certification on a tablet computer. RESULTS: The systematic evaluation and debriefing sessions of TUs gave us a clear SWOT vision of the revised Master's degree in health. The feedback was very positive from students, teachers, and the institution, which encourages us to move forward in this transition. Nonetheless, some of this positive feedback was unexpected, such as the ease of managing mobile learners (e.g. Erasmus, International internship) or personalized reinforcement. CONCLUSION: Our results indicate that a switch to blended learning is feasible in a large Master program, with improvements on student/teacher equity and for the institution.


Assuntos
Educação de Pós-Graduação , Saúde Pública/educação , Educação a Distância , Educação de Pós-Graduação/métodos , Educação de Pós-Graduação/organização & administração , França , Modelos Educacionais
15.
Mater Sci Eng C Mater Biol Appl ; 108: 110359, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923938

RESUMO

The natural biodegradabilty of porous silicon (pSi) in physiological media limits its wider usage for implantable systems. We report the stabilization of porous silicon (pSi) membranes by chemical surface oxidation using RCA1 and RCA2 protocols, which was followed by a PEGylation process using a silane-PEG. These surface modifications stabilized the pSi to allow a long period of immersion in PBS, while leaving the pSi surface sufficiently hydrophilic for good filtration and diffusion of several biomolecules of different sizes without any blockage of the pSi structure. The pore sizes of the pSi membranes were between 5 and 20 nm, with the membrane thickness around 70 µm. The diffusion coefficient for fluorescein through the membrane was 2 × 10-10 cm2 s-1, and for glucose was 2.2 × 10-9 cm2 s-1. The pSi membrane maintained that level of glucose diffusion for one month of immersion in PBS. After 2 months immersion in PBS the pSi membrane continued to operate, but with a reduced glucose diffusion coefficient. The chemical stabilization of pSi membranes provided almost 1 week stable and functional biomolecule transport in blood plasma and opens the possibility for its short-term implantation as a diffusion membrane in biocompatible systems.


Assuntos
Reatores Biológicos , Meios de Cultura/química , Membranas Artificiais , Próteses e Implantes , Silício/química , Difusão , Proteínas de Escherichia coli/metabolismo , Fluoresceína/análise , Fluorescência , Glucose/análise , Nanopartículas/química , Nanopartículas/ultraestrutura , Porosidade , Silanos/química , Fatores de Tempo
16.
Stud Health Technol Inform ; 270: 1215-1216, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32570586

RESUMO

Biostatistics is one of the transversal subjects that all future doctors must acquire and master. Nonetheless, it is a subject that has the reputation of being difficult, which has not been able to be corrected even with the application of new pedagogical methods such as blended learning. We address this problem with our acculturative and disruptive approach in the form of a serious game scenario in clinical research that integrates biostatistics with our R4Web adapted tools. Our approach was launched in 2008 for the second year of medical school. Here we describe this LOE scenario for serious game including the biostatistics disruptive acculturation task and present its new international version.


Assuntos
Bioestatística , Jogos de Vídeo , Aculturação , Biometria , Aprendizagem
17.
Appl Sci (Basel) ; 10(14)2020.
Artigo em Inglês | MEDLINE | ID: mdl-38486792

RESUMO

The burgeoning field of nanotechnology aims to create and deploy nanoscale structures, devices, and systems with novel, size-dependent properties and functions. The nanotechnology revolution has sparked radically new technologies and strategies across all scientific disciplines, with nanotechnology now applied to virtually every area of research and development in the US and globally. NanoFlorida was founded to create a forum for scientific exchange, promote networking among nanoscientists, encourage collaborative research efforts across institutions, forge strong industry-academia partnerships in nanoscience, and showcase the contributions of students and trainees in nanotechnology fields. The 2019 NanoFlorida International Conference expanded this vision to emphasize national and international participation, with a focus on advances made in translating nanotechnology. This review highlights notable research in the areas of engineering especially in optics, photonics and plasmonics and electronics; biomedical devices, nano-biotechnology, nanotherapeutics including both experimental nanotherapies and nanovaccines; nano-diagnostics and -theranostics; nano-enabled drug discovery platforms; tissue engineering, bioprinting, and environmental nanotechnology, as well as challenges and directions for future research.

18.
Stud Health Technol Inform ; 264: 1169-1173, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438109

RESUMO

A learning management system (LMS) used for the initial training of health professionals has been rejected by students. Our study aimed to explain the reason of this rejection. We performed this evaluation on a sample of health students in 2012 and 2017 (n = 144). We used scales from the literature (Technology Acceptance Model, General Self-Efficacy Scale, LMS-Self-Efficacy Scale), and studied the social representation of the LMS. The system seemed accessible and useful, but unfortunately with similarities to the system used in a traumatic student environment. Health students using the system did not have a lower self-efficacy. Although the LMS seemed relevant to students, its initial rejection might have been due to a confounding context that created confusion in the acceptability of the tool. To conclude, there is a need to create new dematerialized course formats but with strong tutorship to improve the usage of the technologies by students.


Assuntos
Instrução por Computador , Autoeficácia , Pessoal de Saúde , Humanos , Aprendizagem , Estudantes
19.
Chem Commun (Camb) ; 55(87): 13152-13155, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31617527

RESUMO

We designed a supported lipid bilayer (SLB) biomimetic membrane system that comprised polyaniline (PANI) to support a lipid bilayer membrane that incorporated Na+/H+ transporter proteins (NhaA) to give the system the capability of controllable electrogenic ion transport. The high turnover rate of NhaA (∼105 per min) provides the basis for this PANI-SLB-NhaA system to be a high-speed rechargeable biocapacitor that functions as a low-energy-consuming fast switch for biological engineering applications.


Assuntos
Compostos de Anilina/metabolismo , Materiais Biomiméticos/metabolismo , Técnicas Biossensoriais , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Compostos de Anilina/química , Materiais Biomiméticos/química , Espectroscopia Dielétrica , Eletrodos , Proteínas de Escherichia coli/química , Ouro/química , Ouro/metabolismo , Bicamadas Lipídicas/química , Trocadores de Sódio-Hidrogênio/química
20.
Biotechnol J ; 13(12): e1800102, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30367543

RESUMO

This review takes an approach to implanted medical devices that considers whether the intention of the implanted device is to have any communication of energy or materials with the body. The first part describes some specific examples of three different classes of implants, analyzed with regards to the type of signal sent to cells. Through several examples, the authors describe that a one way signaling to the body leads to encapsulation or degradation. In most cases, those phenomena do not lead to major problems. However, encapsulation or degradation are critical for new kinds of medical devices capable of duplex communication, which are defined in this review as symbiotic devices. The concept the authors propose is that implanted medical devices that need to be symbiotic with the body also need to be designed with an intended duplex communication of energy and materials with the body. This extends the definition of a biocompatible system to one that requires stable exchange of materials between the implanted device and the body. Having this novel concept in mind will guide research in a new field between medical implant and regenerative medicine to create actual symbiotic devices.


Assuntos
Biotecnologia , Equipamentos e Provisões , Nanotecnologia , Próteses e Implantes , Materiais Biocompatíveis , Humanos , Medicina Regenerativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA