Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Diab Rep ; 18(4): 20, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29532281

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to examine the proposed role of immune modulation in the development and progression of diabetic kidney disease (DKD). RECENT FINDINGS: Diabetic kidney disease has not historically been considered an immune-mediated disease; however, increasing evidence is emerging in support of an immune role in its pathophysiology. Both systemic and local renal inflammation have been associated with DKD. Infiltration of immune cells, predominantly macrophages, into the kidney has been reported in a number of both experimental and clinical studies. In addition, increased levels of circulating pro-inflammatory cytokines have been linked to disease progression. Consequently, a variety of therapeutic strategies involving modulation of the immune response are currently being investigated in diabetic kidney disease. Although no current therapies for DKD are directly based on immune modulation many of the therapies in clinical use have anti-inflammatory effects along with their primary actions. Macrophages emerge as the most likely beneficial immune cell target and compounds which reduce macrophage infiltration to the kidney have shown potential in both animal models and clinical trials.


Assuntos
Nefropatias Diabéticas/imunologia , Sistema Imunitário/fisiologia , Animais , Citocinas/sangue , Humanos , Macrófagos/imunologia
2.
Am J Physiol Renal Physiol ; 312(6): F1141-F1157, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100499

RESUMO

Gremlin1 (Grem1), an antagonist of bone morphogenetic proteins, plays a key role in embryogenesis. A highly specific temporospatial gradient of Grem1 and bone morphogenetic protein signaling is critical to normal lung, kidney, and limb development. Grem1 levels are increased in renal fibrotic conditions, including acute kidney injury, diabetic nephropathy, chronic allograft nephropathy, and immune glomerulonephritis. We demonstrate that a small number of grem1-/- whole body knockout mice on a mixed genetic background (8%) are viable, with a single, enlarged left kidney and grossly normal histology. The grem1-/- mice displayed mild renal dysfunction at 4 wk, which recovered by 16 wk. Tubular epithelial cell-specific targeted deletion of Grem1 (TEC-grem1-cKO) mice displayed a milder response in the acute injury and recovery phases of the folic acid model. Increases in indexes of kidney damage were smaller in TEC-grem1-cKO than wild-type mice. In the recovery phase of the folic acid model, associated with renal fibrosis, TEC-grem1-cKO mice displayed reduced histological damage and an attenuated fibrotic gene response compared with wild-type controls. Together, these data demonstrate that Grem1 expression in the tubular epithelial compartment plays a significant role in the fibrotic response to renal injury in vivo.


Assuntos
Injúria Renal Aguda/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Túbulos Renais/metabolismo , Anormalidades Urogenitais/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Modelos Animais de Doenças , Feminino , Fibrose , Ácido Fólico , Regulação da Expressão Gênica , Predisposição Genética para Doença , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Túbulos Renais/anormalidades , Túbulos Renais/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organogênese , Fenótipo , Transdução de Sinais , Fatores de Tempo , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/patologia
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3095-3104, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28923783

RESUMO

Bone morphogenetic protein-7 (BMP-7) counteracts pro-fibrotic effects of TGFß1 in cultured renal cells and protects from fibrosis in acute and chronic renal injury models. Using the unilateral ureteral obstruction (UUO) model of chronic renal fibrosis, we investigated the effect of exogenous-rhBMP-7 on pro-fibrotic signaling pathways mediated by TGFß1 and hypoxia. Mice undergoing UUO were treated with vehicle or rhBMP-7 (300µg/kg i.p.) every other day for eight days and kidneys analysed for markers of fibrosis and SMAD, MAPK, and PI3K signaling. In the kidney, collecting duct and tubular epithelial cells respond to BMP-7 via activation of SMAD1/5/8. Phosphorylation of SMAD1/5/8 was reduced in UUO kidneys from vehicle-treated animals yet maintained in UUO kidneys from BMP-7-treated animals, confirming renal bioactivity of exogenous rhBMP-7. BMP-7 inhibited Collagen Iα1 and Collagen IIIα1 gene expression and Collagen I protein accumulation, while increasing expression of Collagen IVα1 in UUO kidneys. Activation of SMAD2, SMAD3, ERK, p38 and PI3K/Akt signaling occurred during fibrogenesis and BMP-7 significantly attenuated SMAD3 and Akt signaling in vivo. Analysis of renal collecting duct (mIMCD) and tubular epithelial (HK-2) cells stimulated with TGFß1 or hypoxia (1% oxygen) to activate Akt provided further evidence that BMP-7 specifically inhibited PI3K/Akt signaling. PTEN is a negative regulator of PI3K and BMP-7 increased PTEN expression in vivo and in vitro. These data demonstrate an important mechanism by which BMP-7 orchestrates renal protection through Akt inhibition and highlights Akt inhibitors as anti-fibrotic therapeutics.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Fibrose/prevenção & controle , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Hipóxia Celular/fisiologia , Linhagem Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose/enzimologia , Fibrose/patologia , Nefropatias/enzimologia , Nefropatias/patologia , Nefropatias/prevenção & controle , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Camundongos , PTEN Fosfo-Hidrolase/biossíntese , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
4.
Biochem J ; 466(1): 55-68, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25378054

RESUMO

Gremlin (Grem1) is a member of the DAN family of secreted bone morphogenetic protein (BMP) antagonists. Bone morphogenetic protein-7 (BMP-7) mediates protective effects during renal fibrosis associated with diabetes and other renal diseases. The pathogenic mechanism of Grem1 during diabetic nephropathy (DN) has been suggested to be binding and inhibition of BMP-7. However, the precise interactions between Grem1, BMP-7 and other BMPs have not been accurately defined. In the present study, we show the affinity of Grem1 for BMP-7 is lower than that of BMP-2 and BMP-4, using a combination of surface plasmon resonance and cell culture techniques. Using kidney proximal tubule cells and HEK (human embryonic kidney)-293 cell Smad1/5/8 phosphorylation and BMP-dependent gene expression as readouts, Grem1 consistently demonstrated a higher affinity for BMP-2>BMP-4>BMP-7. Cell-associated Grem1 did not inhibit BMP-2- or BMP-4-mediated signalling, suggesting that Grem1-BMP-2 binding occurred in solution, preventing BMP receptor activation. These data suggest that Grem1 preferentially binds to BMP-2 and this may be the dominant complex in a disease situation where levels of Grem1 and BMPs are elevated.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Túbulos Renais Proximais/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Túbulos Renais Proximais/citologia , Fosforilação , Ligação Proteica , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo , Ressonância de Plasmônio de Superfície
5.
Biochim Biophys Acta ; 1833(8): 1969-78, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23567938

RESUMO

TGF-ß1 is a prototypic profibrotic cytokine and major driver of fibrosis in the kidney and other organs. Induced in high glucose-1 (IHG-1) is a mitochondrial protein which we have recently reported to be associated with renal disease. IHG-1 amplifies responses to TGF-ß1 and regulates mitochondrial biogenesis by stabilising the transcriptional co-activator peroxisome proliferator-activated receptor gamma coactivator-1-alpha. Here we report that the mitochondrial localisation of IHG-1 is pivotal in the amplification of TGF-ß1 signalling. We demonstrate that IHG-1 expression is associated with repression of the endogenous TGF-ß1 inhibitor Smad7. Intriguingly, expression of a non-mitochondrial deletion mutant of IHG-1 (Δmts-IHG-1) repressed TGF-ß1 fibrotic signalling in renal epithelial cells. In cells expressing Δmts-IHG-1 fibrotic responses including CCN2/connective tissue growth factor, fibronectin and jagged-1 expression were reduced following stimulation with TGF-ß1. Δmts-IHG-1 modulation of TGF-ß1 signalling was associated with increased Smad7 protein expression. Δmts-IHG-1 modulated TGF-ß1 activity by increasing Smad7 protein expression as it failed to inhibit TGF-ß1 transcriptional responses when endogenous Smad7 expression was knocked down. These data indicate that mitochondria modulate TGF-ß1 signal transduction and that IHG-1 is a key player in this modulation.


Assuntos
Fibrose/metabolismo , Mitocôndrias/genética , Proteínas/metabolismo , Proteína Smad7/biossíntese , Fator de Crescimento Transformador beta1/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células Epiteliais/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Rim/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Fosforilação , Proteínas/genética , Proteínas Serrate-Jagged , Transdução de Sinais , Proteína Smad7/genética , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta1/genética
6.
J Cell Sci ; 125(Pt 23): 5621-9, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22976296

RESUMO

Signalling interplay between transforming growth factor-ß (TGFß) and CCN2 [also called connective tissue growth factor (CTGF)] plays a crucial role in the progression of diabetic nephropathy and has been implicated in cellular differentiation. To investigate the potential role of microRNAs (miRNAs) in the mediation of this signalling network, we performed miRNA screening in mesangial cells treated with recombinant human CCN2. Analysis revealed a cohort of 22 miRNAs differentially expressed by twofold or more, including members of the miR-302 family. Target analysis of miRNA to 3'-untranslated regions (3'-UTRs) identified TGFß receptor II (TßRII) as a potential miR-302 target. In mesangial cells, decreased TßRII expression was confirmed in response to CCN2 together with increased expression of miR-302d. TßRII was confirmed as an miR-302 target, and inhibition of miR-302d was sufficient to attenuate the effect of CCN2 on TßRII. Data from the European Renal cDNA Biopsy Bank revealed decreased TßRII in diabetic patients, suggesting pathophysiological significance. In a mouse model of fibrosis (UUO), miR-302d was increased, with decreased TßRII expression and aberrant signalling, suggesting relevance in chronic fibrosis. miR-302d decreased TGFß-induced epithelial mesenchymal transition (EMT) in renal HKC8 epithelial cells and attenuated TGFß-induced mesangial production of fibronectin and thrombospondin. In summary, we demonstrate a new mode of regulation of TGFß by CCN2, and conclude that the miR-302 family has a role in regulating growth factor signalling pathways, with implications for nephropathic cell fate transitions.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/farmacologia , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Masculino , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor do Fator de Crescimento Transformador beta Tipo II , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/metabolismo
7.
Exp Physiol ; 99(9): 1154-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25085843

RESUMO

Diabetic kidney disease occurs in >30% of patients with type 2 diabetes mellitus and is characterized at source by a maladaptive response in the renal parenchyma to exposure to a glucotoxic-lipotoxic diabetic milieu that courses coincident with hypertension. The consequence of these maladaptive responses is progressive renal injury, which is exacerbated by the development of a chronic inflammatory infiltrate associated with the development of tubulointerstitial fibrosis. The evolution of tubulointerstitial fibrosis is correlated with the loss of functional renal mass and descent towards renal failure. Transforming growth factor-ß1 (TGF-ß1) is a recognized mediator of the profibrotic response of mesangial cells and renal tubular epithelial cells to hyperglycaemia. While euglycaemia remains the goal in the treatment of type 2 diabetes mellitus, the prevention, arrest and reversal of microvascular complications, such as diabetic kidney disease, may be assisted by pharmacological modulation of the effectors of glucotoxicity, such as TGF-ß1. This review focuses on describing how, through reductionist in vitro experimentation focusing on TGF-ß1-related responses to hyperglycaemia, we have identified induced in high glucose-1 (IHG-1), induced in high glucose-2 (IHG-2/Grem1) and the lipoxin-inducible microRNA let-7c as potential targets for harnessing new therapeutic approaches to limit the bioactivity of TGF-ß1 in diabetic kidney disease.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Hipoglicemiantes/uso terapêutico , Rim/efeitos dos fármacos , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Animais , Biomarcadores/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Desenho de Fármacos , Fibrose , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/metabolismo , Rim/patologia , MicroRNAs/metabolismo , Proteínas/metabolismo
8.
J Am Soc Nephrol ; 24(4): 627-37, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23520204

RESUMO

Lipoxins, which are endogenously produced lipid mediators, promote the resolution of inflammation, and may inhibit fibrosis, suggesting a possible role in modulating renal disease. Here, lipoxin A4 (LXA4) attenuated TGF-ß1-induced expression of fibronectin, N-cadherin, thrombospondin, and the notch ligand jagged-1 in cultured human proximal tubular epithelial (HK-2) cells through a mechanism involving upregulation of the microRNA let-7c. Conversely, TGF-ß1 suppressed expression of let-7c. In cells pretreated with LXA4, upregulation of let-7c persisted despite subsequent stimulation with TGF-ß1. In the unilateral ureteral obstruction model of renal fibrosis, let-7c upregulation was induced by administering an LXA4 analog. Bioinformatic analysis suggested that targets of let-7c include several members of the TGF-ß1 signaling pathway, including the TGF-ß receptor type 1. Consistent with this, LXA4-induced upregulation of let-7c inhibited both the expression of TGF-ß receptor type 1 and the response to TGF-ß1. Overexpression of let-7c mimicked the antifibrotic effects of LXA4 in renal epithelia; conversely, anti-miR directed against let-7c attenuated the effects of LXA4. Finally, we observed that several let-7c target genes were upregulated in fibrotic human renal biopsies compared with controls. In conclusion, these results suggest that LXA4-mediated upregulation of let-7c suppresses TGF-ß1-induced fibrosis and that expression of let-7c targets is dysregulated in human renal fibrosis.


Assuntos
Rim/efeitos dos fármacos , Rim/patologia , Lipoxinas/farmacologia , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Caderinas/efeitos dos fármacos , Caderinas/metabolismo , Células Cultivadas , Fibronectinas/efeitos dos fármacos , Fibronectinas/metabolismo , Fibrose , Humanos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , MicroRNAs/efeitos dos fármacos , Receptor Notch1/efeitos dos fármacos , Receptor Notch1/metabolismo , Transdução de Sinais , Trombospondinas/efeitos dos fármacos , Trombospondinas/metabolismo , Fator de Crescimento Transformador beta1/efeitos dos fármacos
9.
J Am Soc Nephrol ; 24(10): 1537-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24029427

RESUMO

Sex and genetic variation influence the risk of developing diabetic nephropathy and ESRD in patients with type 1 diabetes. We performed a genome-wide association study in a cohort of 3652 patients from the Finnish Diabetic Nephropathy (FinnDiane) Study with type 1 diabetes to determine whether sex-specific genetic risk factors for ESRD exist. A common variant, rs4972593 on chromosome 2q31.1, was associated with ESRD in women (P<5×10(-8)) but not in men (P=0.77). This association was replicated in the meta-analysis of three independent type 1 diabetes cohorts (P=0.02) and remained significant for women (P<5×10(-8); odds ratio, 1.81 [95% confidence interval, 1.47 to 2.24]) upon combined meta-analysis of the discovery and replication cohorts. rs4972593 is located between the genes that code for the Sp3 transcription factor, which interacts directly with estrogen receptor α and regulates the expression of genes linked to glomerular function and the pathogenesis of nephropathy, and the CDCA7 transcription factor, which regulates cell proliferation. Further examination revealed potential transcription factor-binding sites within rs4972593 and predicted eight estrogen-responsive elements within 5 kb of this locus. Moreover, we found sex-specific differences in the glomerular expression levels of SP3 (P=0.004). Overall, these results suggest that rs4972593 is a sex-specific genetic variant associated with ESRD in patients with type 1 diabetes and may underlie the sex-specific protection against ESRD.


Assuntos
Cromossomos Humanos Par 2/genética , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/genética , Falência Renal Crônica/genética , Adulto , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Caracteres Sexuais , Fator de Transcrição Sp3/genética
10.
Biochim Biophys Acta ; 1822(4): 589-99, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22266139

RESUMO

Transforming growth factor-beta (TGF-ß1) is implicated in the onset and progression of renal fibrosis and diabetic nephropathy (DN), leading to a loss of epithelial characteristics of tubular cells. The transcriptional profile of renal tubular epithelial cells stimulated with TGF-ß1 was assessed using RNA-Seq, with 2027 differentially expressed genes identified. Promoter analysis of transcription factor binding sites in the TGF-ß1 responsive gene set predicted activation of multiple transcriptional networks, including NFκB. Comparison of RNA-Seq with microarray data from identical experimental conditions identified low abundance transcripts exclusive to RNA-Seq data. We compared these findings to human disease by analyzing transcriptomic data from renal biopsies of patients with DN versus control groups, identifying a shared subset of 179 regulated genes. ARK5, encoding an AMP-related kinase, and TGFBI - encoding transforming growth factor, beta-induced protein were induced by TGF-ß1 and also upregulated in human DN. Suppression of ARK5 attenuated fibrotic responses of renal epithelia to TGF-ß1 exposure; and silencing of TGFBI induced expression of the epithelial cell marker - E-cadherin. We identified low abundance transcripts in sequence data and validated expression levels of several transcripts (ANKRD56, ENTPD8) in tubular enriched kidney biopsies of DN patients versus living donors. In conclusion, we have defined a TGF-ß1-driven pro-fibrotic signal in renal epithelial cells that is also evident in the DN renal transcriptome.


Assuntos
Nefropatias Diabéticas/patologia , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Rim/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Western Blotting , Linhagem Celular , Nefropatias Diabéticas/genética , Humanos , Rim/patologia , Reação em Cadeia da Polimerase
11.
Circulation ; 125(7): 920-30, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22247494

RESUMO

BACKGROUND: Pulmonary hypertension occurs in chronic hypoxic lung diseases, significantly worsening morbidity and mortality. The important role of altered bone morphogenetic protein (BMP) signaling in pulmonary hypertension was first suspected after the identification of heterozygous BMP receptor mutations as the underlying defect in the rare heritable form of pulmonary arterial hypertension. Subsequently, it was demonstrated that BMP signaling was also reduced in common forms of pulmonary hypertension, including hypoxic pulmonary hypertension; however, the mechanism of this reduction has not previously been elucidated. METHODS AND RESULTS: Expression of 2 BMP antagonists, gremlin 1 and gremlin 2, was higher in the lung than in other organs, and gremlin 1 was further increased in the walls of small intrapulmonary vessels of mice during the development of hypoxic pulmonary hypertension. Hypoxia stimulated gremlin secretion from human pulmonary microvascular endothelial cells in vitro, which inhibited endothelial BMP signaling and BMP-stimulated endothelial repair. Haplodeficiency of gremlin 1 augmented BMP signaling in the hypoxic mouse lung and reduced pulmonary vascular resistance by attenuating vascular remodeling. Furthermore, gremlin was increased in the walls of small intrapulmonary vessels in idiopathic pulmonary arterial hypertension and the rare heritable form of pulmonary arterial hypertension in a distribution suggesting endothelial localization. CONCLUSIONS: These findings demonstrate a central role for increased gremlin in hypoxia-induced pulmonary vascular remodeling and the increased pulmonary vascular resistance in hypoxic pulmonary hypertension. High levels of basal gremlin expression in the lung may account for the unique vulnerability of the pulmonary circulation to heterozygous mutations of BMP type 2 receptor in pulmonary arterial hypertension.


Assuntos
Hipertensão Pulmonar/etiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Hipóxia/complicações , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/análise , Masculino , Camundongos , Transdução de Sinais , Resistência Vascular
12.
BMC Genomics ; 14: 525, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23902294

RESUMO

BACKGROUND: CCN2/CTGF is an established effector of TGFß driven responses in diabetic nephropathy. We have identified an interaction between CCN2 and TGFß leading to altered phenotypic differentiation and inhibited cellular migration. Here we determine the gene expression profile associated with this phenotype and define a transcriptional basis for differential actin related gene expression and cytoskeletal function. RESULTS: From a panel of genes regulated by TGFß and CCN2, we used co-inertia analysis to identify and then experimentally verify a subset of transcription factors, E2F1 and CREB, that regulate an expression fingerprint implicated in altered actin dynamics and cell hypertrophy. Importantly, actin related genes containing E2F1 and CREB binding sites, stratified by expression profile within the dataset. Further analysis of actin and cytoskeletal related genes from patients with diabetic nephropathy suggests recapitulation of this programme during the development of renal disease. The Rho family member Cdc42 was also found uniquely to be activated in cells treated with TGFß and CCN2; Cdc42 interacting genes were differentially regulated in diabetic nephropathy. CONCLUSIONS: TGFß and CCN2 attenuate CREB and augment E2F1 transcriptional activation with the likely effect of altering actin cytoskeletal and cell growth/hypertrophic gene activity with implications for cell dysfunction in diabetic kidney disease. The cytoskeletal regulator Cdc42 may play a role in this signalling response.


Assuntos
Actinas/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator de Transcrição E2F1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Sítios de Ligação , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Hipertrofia/genética , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Proteína cdc42 de Ligação ao GTP/metabolismo
13.
Biochem J ; 441(1): 499-510, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21871016

RESUMO

The critical involvement of TGF-ß1 (transforming growth factor-ß1) in DN (diabetic nephropathy) is well established. However, the role of CTGF (connective tissue growth factor) in regulating the complex interplay of TGF-ß1 signalling networks is poorly understood. The purpose of the present study was to investigate co-operative signalling between CTGF and TGF-ß1 and its physiological significance. CTGF was determined to bind directly to the TßRIII (TGF-ß type III receptor) and antagonize TGF-ß1-induced Smad phosphorylation and transcriptional responses via its N-terminal half. Furthermore, TGF-ß1 binding to its receptor was inhibited by CTGF. A consequent shift towards non-canonical TGF-ß1 signalling and expression of a unique profile of differentially regulated genes was observed in CTGF/TGF-ß1-treated mesangial cells. Decreased levels of Smad2/3 phosphorylation were evident in STZ (streptozotocin)-induced diabetic mice, concomitant with increased levels of CTGF. Knockdown of TßRIII restored TGF-ß1-mediated Smad signalling and cell contractility, suggesting that TßRIII is key for CTGF-mediated regulation of TGF-ß1. Comparison of gene expression profiles from CTGF/TGF-ß1-treated mesangial cells and human renal biopsy material with histological diagnosis of DN revealed significant correlation among gene clusters. In summary, mesangial cell responses to TGF-ß1 are regulated by cross-talk with CTGF, emphasizing the potential utility of targeting CTGF in DN.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/farmacologia , Regulação da Expressão Gênica/fisiologia , Células Mesangiais/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Linhagem Celular , Movimento Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Diabetes Mellitus Experimental , Humanos , Camundongos , Fosforilação , Proteoglicanas/genética , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteínas Smad/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
14.
J Cell Sci ; 123(Pt 19): 3316-28, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20844151

RESUMO

Mammary epithelial cells organize in three dimensions and generate acini when supported on laminin-rich extracellular matrix. Acinus formation begins with the apicobasal polarisation of the outer cells of the assembly and the withdrawal of these cells from the cell cycle. Internal cells then clear out to form a hollow lumen. Here, we show that PKCζ is phosphorylated (at T410) and activated in the early stages of acinus formation in both primary cells and MCF10A cells, and during mammary tree maturation in vivo. Phospho-PKCζ colocalised with tight junction components and bound to the Par polarising complex in developing acini. To further investigate the importance of PKCζ phosphorylation in this context, acinus formation was studied in MCF10A cells overexpressing non-phosphorylatable (T410A) or 'constitutively phosphorylated' (T410E) PKCζ. In both cell types, acinus-associated cell polarisation and lumen clearance were compromised, emphasising the importance of regulated phosphorylation of PKCζ at T410 for successful acinus formation. PKCζ can be activated in a phosphorylation (at T410)-dependent and a phosphorylation-independent manner. Cells overexpressing a complete kinase-deficient PKCζ (K281W) displayed a cell polarising deficit, but also generated large 'multi-acinar' structures with associated early lumenal cell hyperproliferation. Therefore our data shows, for the first time, that two separable PKCζ activities (one phosphorylation-dependent, the other not) are required to support the cell polarisation and proliferation restriction that underpins successful acinus formation. Paralleling these contributions, we found that low levels of PKCζ mRNA expression are associated with more 'poorly differentiated' tumours and a poor outcome in a cohort of 295 breast cancer patients.


Assuntos
Neoplasias da Mama/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Proteína Quinase C/metabolismo , Adulto , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Polaridade Celular/genética , Transformação Celular Neoplásica , Progressão da Doença , Células Epiteliais/patologia , Feminino , Humanos , Hiperplasia/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/patologia , Camundongos , Camundongos Endogâmicos , Análise em Microsséries , Proteínas Mutantes/genética , Organogênese/genética , Fosforilação , Gravidez , Proteína Quinase C/genética , Análise de Sobrevida , Transgenes/genética
15.
J Am Soc Nephrol ; 22(8): 1475-85, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21784897

RESUMO

Increased expression of Induced-by-High-Glucose 1 (IHG-1) associates with tubulointerstitial fibrosis in diabetic nephropathy. IHG-1 amplifies TGF-ß1 signaling, but the functions of this highly-conserved protein are not well understood. IHG-1 contains a putative mitochondrial-localization domain, and here we report that IHG-1 is specifically localized to mitochondria. IHG-1 overexpression increased mitochondrial mass and stabilized peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Conversely, inhibition of IHG-1 expression decreased mitochondrial mass, downregulated mitochondrial proteins, and PGC-1α-regulated transcription factors, including nuclear respiratory factor 1 and mitochondrial transcription factor A (TFAM), and reduced activity of the TFAM promoter. In the unilateral ureteral obstruction model, we observed higher PGC-1α protein expression and IHG-1 levels with fibrosis. In a gene-expression database, we noted that renal biopsies of human diabetic nephropathy demonstrated higher expression of genes encoding key mitochondrial proteins, including cytochrome c and manganese superoxide dismutase, compared with control biopsies. In summary, these data suggest that IHG-1 increases mitochondrial biogenesis by promoting PGC-1α-dependent processes, potentially contributing to the pathogenesis of renal fibrosis.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , DNA Mitocondrial/metabolismo , Fibrose/metabolismo , Glucose/metabolismo , Células HeLa , Humanos , Hipóxia , Túbulos Renais/patologia , Masculino , Mitocôndrias/metabolismo , Modelos Biológicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Ativação Transcricional
16.
Am J Respir Cell Mol Biol ; 42(5): 517-23, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19574532

RESUMO

Gremlin is an extracellular glycoprotein that was first identified over a decade ago through its important role in embryonic development, in which it acts as an antagonist of bone morphogenetic protein actions. It plays a critical role in the development of normal airways and the pulmonary circulation in the embryo. More recently, considerable evidence has been presented for a role for gremlin in the pathogenesis of lung diseases, particularly pulmonary hypertension and idiopathic pulmonary fibrosis. The purpose of this article is to review this evidence, consider the potential mechanisms and multicellular actions by which gremlin contributes to disease pathogenesis, and suggest future avenues of research.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pneumopatias/metabolismo , Pulmão/embriologia , Pulmão/patologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Pulmão/metabolismo , Especificidade de Órgãos
17.
BMC Dev Biol ; 10: 73, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20604929

RESUMO

BACKGROUND: Male Irs2-/- mice develop fatal type 2 diabetes at 13-14 weeks. Defects in neuronal proliferation, pituitary development and photoreceptor cell survival manifest in Irs2-/- mice. We identify retarded renal growth in male and female Irs2-/- mice, independent of diabetes. RESULTS: Kidney size and kidney:body weight ratio were reduced by approximately 20% in Irs2-/- mice at postnatal day 5 and was maintained in maturity. Reduced glomerular number but similar glomerular density was detected in Irs2-/- kidney compared to wild-type, suggesting intact global kidney structure. Analysis of insulin signalling revealed renal-specific upregulation of PKBbeta/Akt2, hyperphosphorylation of GSK3beta and concomitant accumulation of beta-catenin in Irs2-/- kidney. Despite this, no significant upregulation of beta-catenin targets was detected. Kidney-specific increases in Yes-associated protein (YAP), a key driver of organ size were also detected in the absence of Irs2. YAP phosphorylation on its inhibitory site Ser127 was also increased, with no change in the levels of YAP-regulated genes, suggesting that overall YAP activity was not increased in Irs2-/- kidney. CONCLUSIONS: In summary, deletion of Irs2 causes reduced kidney size early in mouse development. Compensatory mechanisms such as increased beta-catenin and YAP levels failed to overcome this developmental defect. These data point to Irs2 as an important novel mediator of kidney size.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Rim/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Feminino , Glicogênio Sintase Quinase 3 beta , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Masculino , Camundongos , Tamanho do Órgão , Fosfoproteínas/genética , Fosforilação , Transdução de Sinais , Proteínas de Sinalização YAP
18.
Breast Cancer Res ; 12(4): R59, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20682066

RESUMO

INTRODUCTION: The homeobox-containing transcription factor muscle segment homeobox 2 (Msx2) plays an important role in mammary gland development. However, the clinical implications of Msx2 expression in breast cancer are unclear. The aims of this study were to investigate the potential clinical value of Msx2 as a breast cancer biomarker and to clarify its functional role in vitro. METHODS: Msx2 gene expression was first examined in a well-validated breast cancer transcriptomic dataset of 295 patients. Msx2 protein expression was then evaluated by immunohistochemistry in a tissue microarray (TMA) containing 281 invasive breast tumours. Finally, to assess the functional role of Msx2 in vitro, Msx2 was ectopically expressed in a highly invasive breast tumour cell line (MDA-MB-231) and an immortalised breast cell line (MCF10a), and these cell lines were examined for changes in growth rate, cell death and cell signalling. RESULTS: Examination of Msx2 mRNA expression in a breast cancer transcriptomic dataset demonstrated that increased levels of Msx2 were associated with good prognosis (P = 0.011). Evaluation of Msx2 protein expression on a TMA revealed that Msx2 was detectable in both tumour cell nuclei and cytoplasm. Cytoplasmic Msx2 expression was associated with low grade tumours (P = 0.012) and Ki67 negativity (P = 0.018). Nuclear Msx2 correlated with low-grade tumours (P = 0.015), estrogen receptor positivity (P = 0.038), low Ki67 (P = 0.005) and high cyclin D1 expression (P = 0.037). Increased cytoplasmic Msx2 expression was associated with a prolonged breast cancer-specific survival (P = 0.049), recurrence-free survival (P = 0.029) and overall survival (P = 0.019). Ectopic expression of Msx2 in breast cell lines resulted in radically decreased cell viability mediated by induction of cell death via apoptosis. Further analysis of Msx2-expressing cells revealed increased levels of p21 and phosphorylated extracellular signal-regulated kinase (ERK) and decreased levels of Survivin and the 'split ends' (SPEN) protein family member RBM15. CONCLUSIONS: We conclude that increased Msx2 expression results in improved outcome for breast cancer patients, possibly by increasing the likelihood of tumour cell death by apoptosis.


Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Proteínas de Homeodomínio/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica/estatística & dados numéricos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Transdução de Sinais , Análise Serial de Tecidos
19.
Biochim Biophys Acta ; 1782(1): 10-21, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17980714

RESUMO

Diabetic nephropathy is currently the leading cause of end-stage renal disease worldwide, and occurs in approximately one third of all diabetic patients. The molecular pathogenesis of diabetic nephropathy has not been fully characterized and novel mediators and drivers of the disease are still being described. Previous data from our laboratory has identified the developmentally regulated gene Gremlin as a novel target implicated in diabetic nephropathy in vitro and in vivo. We used bioinformatic analysis to examine whether Gremlin gene sequence and structure could be used to identify other genes implicated in diabetic nephropathy. The Notch ligand Jagged1 and its downstream effector, hairy enhancer of split-1 (Hes1), were identified as genes with significant similarity to Gremlin in terms of promoter structure and predicted microRNA binding elements. This led us to discover that transforming growth factor-beta (TGFbeta1), a primary driver of cellular changes in the kidney during nephropathy, increased Gremlin, Jagged1 and Hes1 expression in human kidney epithelial cells. Elevated levels of Gremlin, Jagged1 and Hes1 were also detected in extracts from renal biopsies from diabetic nephropathy patients, but not in control living donors. In situ hybridization identified specific upregulation and co-expression of Gremlin, Jagged1 and Hes1 in the same tubuli of kidneys from diabetic nephropathy patients, but not controls. Finally, Notch pathway gene clustering showed that samples from diabetic nephropathy patients grouped together, distinct from both control living donors and patients with minimal change disease. Together, these data suggest that Notch pathway gene expression is elevated in diabetic nephropathy, co-incident with Gremlin, and may contribute to the pathogenesis of this disease.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Nefropatias Diabéticas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Biópsia , Proteínas Morfogenéticas Ósseas/genética , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Citocinas , Nefropatias Diabéticas/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteínas de Membrana/genética , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas , Ratos , Proteínas Serrate-Jagged , Fator de Crescimento Transformador beta1/farmacologia
20.
Breast Cancer Res ; 11(5): 209, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19818165

RESUMO

Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development.


Assuntos
Neoplasias da Mama/enzimologia , Sistema de Sinalização das MAP Quinases , Neoplasias Mamárias Experimentais/enzimologia , Animais , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Glândulas Mamárias Animais/enzimologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Humanas/enzimologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Neoplasias Mamárias Experimentais/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA