RESUMO
Metastasis requires cancer cells to undergo metabolic changes that are poorly understood1-3. Here we show that metabolic differences among melanoma cells confer differences in metastatic potential as a result of differences in the function of the MCT1 transporter. In vivo isotope tracing analysis in patient-derived xenografts revealed differences in nutrient handling between efficiently and inefficiently metastasizing melanomas, with circulating lactate being a more prominent source of tumour lactate in efficient metastasizers. Efficient metastasizers had higher levels of MCT1, and inhibition of MCT1 reduced lactate uptake. MCT1 inhibition had little effect on the growth of primary subcutaneous tumours, but resulted in depletion of circulating melanoma cells and reduced the metastatic disease burden in patient-derived xenografts and in mouse melanomas. In addition, inhibition of MCT1 suppressed the oxidative pentose phosphate pathway and increased levels of reactive oxygen species. Antioxidants blocked the effects of MCT1 inhibition on metastasis. MCT1high and MCT1-/low cells from the same melanomas had similar capacities to form subcutaneous tumours, but MCT1high cells formed more metastases after intravenous injection. Metabolic differences among cancer cells thus confer differences in metastatic potential as metastasizing cells depend on MCT1 to manage oxidative stress.
Assuntos
Melanoma/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Melanoma/genética , Melanoma/secundário , Camundongos , Transportadores de Ácidos Monocarboxílicos/genética , Estresse Oxidativo , Simportadores/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Purine nucleotides are necessary for various biological processes related to cell proliferation. Despite their importance in DNA and RNA synthesis, cellular signaling, and energy-dependent reactions, the impact of changes in cellular purine levels on cell physiology remains poorly understood. Here, we find that purine depletion stimulates cell migration, despite effective reduction in cell proliferation. Blocking purine synthesis triggers a shunt of glycolytic carbon into the serine synthesis pathway, which is required for the induction of cell migration upon purine depletion. The stimulation of cell migration upon a reduction in intracellular purines required one-carbon metabolism downstream of de novo serine synthesis. Decreased purine abundance and the subsequent increase in serine synthesis triggers an epithelial-mesenchymal transition (EMT) and, in cancer models, promotes metastatic colonization. Thus, reducing the available pool of intracellular purines re-routes metabolic flux from glycolysis into de novo serine synthesis, a metabolic change that stimulates a program of cell migration.
Assuntos
Nucleotídeos de Purina , Serina , Carbono , Movimento Celular , Purinas , Serina/metabolismoRESUMO
We screen ion channels and transporters throughout the genome to identify those required by human melanoma cells but not by normal human melanocytes. We discover that Mucolipin-1 (MCOLN1), which encodes the lysosomal cation channel TRPML1, is preferentially required for the survival and proliferation of melanoma cells. Loss of MCOLN1/TRPML1 function impairs the growth of patient-derived melanomas in culture and in xenografts but does not affect the growth of human melanocytes. TRPML1 expression and macropinocytosis are elevated in melanoma cells relative to melanocytes. TRPML1 is required in melanoma cells to negatively regulate MAPK pathway and mTORC1 signaling. TRPML1-deficient melanoma cells exhibit decreased survival, proliferation, tumor growth, and macropinocytosis, as well as serine depletion and proteotoxic stress. All of these phenotypes are partially or completely rescued by mTORC1 inhibition. Melanoma cells thus increase TRPML1 expression relative to melanocytes to attenuate MAPK and mTORC1 signaling, to sustain macropinocytosis, and to avoid proteotoxic stress.
Assuntos
Sistema de Sinalização das MAP Quinases , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Melanoma/metabolismo , Proteostase , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , Camundongos , Fenótipo , Pinocitose , Canais de Potencial de Receptor Transitório/genética , Células Tumorais CultivadasRESUMO
Groundwater is a major source for drinking water in the United States, and therefore, its quality and quantity is of extreme importance. One major concern that has emerged is the possible contamination of groundwater due to the unconventional oil and gas extraction activities. As such, the impacts of exogenous contaminants on microbial ecology is an area to be explored to understand what are the chemical and physical conditions that allow the proliferation of pathogenic bacteria and to find alternatives for water treatment by identifying organic-degrading bacteria. In this work, we assess the interplay between groundwater quality and the microbiome in contaminated groundwaters rich in hydrocarbon gases, volatile organic and inorganic compounds, and various metals. Opportunistic pathogenic bacteria, such as Aeromonas hydrophila, Bacillus cereus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were identified, increasing the risk for consumption of and exposure to these contaminated groundwaters. Additionally, antimicrobial tests revealed that many of the identified bacteria were resistant to different antibiotics. The MALDI-TOF MS results were successfully confirmed with 16S rRNA gene sequencing, proving the accuracy of this high-throughput method. Collectively, these data provide a seminal understanding of the microbial populations in contaminated groundwater overlying anthropogenic activities like unconventional oil and gas development.
Assuntos
Bactérias/classificação , Água Subterrânea/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , DNA Bacteriano/genética , Água Potável , RNA Ribossômico 16S/genéticaRESUMO
At the forefront of the discussions about climate change and energy independence has been the process of hydraulic fracturing, which utilizes large amounts of water, proppants, and chemical additives to stimulate sequestered hydrocarbons from impermeable subsurface strata. This process also produces large amounts of heterogeneous flowback and formation waters, the subsurface disposal of which has most recently been linked to the induction of anthropogenic earthquakes. As such, the management of these waste streams has provided a newfound impetus to explore recycling alternatives to reduce the reliance on subsurface disposal and fresh water resources. However, the biogeochemical characteristics of produced oilfield waste render its recycling and reutilization for production well stimulation a substantial challenge. Here we present a comprehensive analysis of produced waste from the Eagle Ford shale region before, during, and after treatment through adjustable separation, flocculation, and disinfection technologies. The collection of bulk measurements revealed significant reductions in suspended and dissolved constituents that could otherwise preclude untreated produced water from being utilized for production well stimulation. Additionally, a significant step-wise reduction in pertinent scaling and well-fouling elements was observed, in conjunction with notable fluctuations in the microbiomes of highly variable produced waters. Collectively, these data provide insight into the efficacies of available water treatment modalities within the shale energy sector, which is currently challenged with improving the environmental stewardship of produced water management.
RESUMO
Bacterial communities in groundwater are very important as they maintain a balanced biogeochemical environment. When subjected to stressful environments, for example, due to anthropogenic contamination, bacterial communities and their dynamics change. Studying the responses of the groundwater microbiome in the face of environmental changes can add to our growing knowledge of microbial ecology, which can be utilized for the development of novel bioremediation strategies. High-throughput and simpler techniques that allow the real-time study of different microbiomes and their dynamics are necessary, especially when examining larger data sets. Matrix-assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) is a workhorse for the high-throughput identification of bacteria. In this work, groundwater samples were collected from a rural area in southern Texas, where agricultural activities and unconventional oil and gas development are the most prevalent anthropogenic activities. Bacterial communities were assessed using MALDI-TOF MS, with bacterial diversity and abundance being analyzed with the contexts of numerous organic and inorganic groundwater constituents. Mainly denitrifying and heterotrophic bacteria from the Phylum Proteobacteria were isolated. These microorganisms are able to either transform nitrate into gaseous forms of nitrogen or degrade organic compounds such as hydrocarbons. Overall, the bacterial communities varied significantly with respect to the compositional differences that were observed from the collected groundwater samples. Collectively, these data provide a baseline measurement of bacterial diversity in groundwater located near anthropogenic surface and subsurface activities.
Assuntos
Bactérias , Água Subterrânea/química , Campos de Petróleo e Gás , Microbiologia da Água , Qualidade da Água , Água Subterrânea/microbiologia , Hidrocarbonetos , Indústria de Petróleo e Gás , Compostos Orgânicos , TexasRESUMO
Groundwater quality and quantity is of extreme importance as it is a source of drinking water in the United States. One major concern has emerged due to the possible contamination of groundwater from unconventional oil and natural gas extraction activities. Recent studies have been performed to understand if these activities are causing groundwater contamination, particularly with respect to exogenous hydrocarbons and volatile organic compounds. The impact of contaminants on microbial ecology is an area to be explored as alternatives for water treatment are necessary. In this work, we identified cultivable organic-degrading bacteria in groundwater in close proximity to unconventional natural gas extraction. Pseudomonas stutzeri and Acinetobacter haemolyticus were identified using matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS), which proved to be a simple, fast, and reliable method. Additionally, the potential use of the identified bacteria in water and/or wastewater bioremediation was studied by determining the ability of these microorganisms to degrade toluene and chloroform. In fact, these bacteria can be potentially applied for in situ bioremediation of contaminated water and wastewater treatment, as they were able to degrade both compounds.