Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Dairy Sci ; 107(3): 1370-1385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37944807

RESUMO

Ropy defect of pasteurized fluid milk is a type of spoilage which manifests itself by an increased viscosity, slimy body, and string-like flow during pouring. This defect has, among other causes, been attributed to the growth, proliferation and exopolysaccharide production by coliform bacteria, which are most commonly introduced in milk as post-pasteurization contaminants. As we identified both Klebsiella pneumoniae ssp. pneumoniae and Rahnella inusitata that were linked to a ropy defect, the goal of this study was to characterize 3 K. pneumoniae ssp. pneumoniae strains and 2 R. inusitata for (1) their ability to grow and cause ropy defect in milk at 6°C and 21°C and to (2) probe the genetic basis for observed ropy phenotype. Although all K. pneumoniae ssp. pneumoniae and R. inusitata strains showed net growth of >4 log10 over 48 h in UHT milk at 21°C, only R. inusitata strains displayed growth during 28-d incubation period at 6°C (>6 log10). Two out of 3 K. pneumoniae ssp. pneumoniae strains were capable of causing the ropy defect in milk at 21°C, as supported by an increase in the viscosity of milk and string-like flow during pouring; these 2 strains were originally isolated from raw milk. Only one R. inusitata strains was able to cause the ropy defect in milk; this strain was able to cause the defect at both 6°C and 21°C, and was originally isolated from a pasteurized milk. These findings suggest that the potential of K. pneumoniae ssp. pneumoniae and R. inusitata to cause ropy defect in milk is a strain-dependent characteristic. Comparative genomics provided no definitive answer on genetic basis for the ropy phenotype. However, for K. pneumoniae ssp. pneumoniae, genes rffG, rffH, rfbD, and rfbC involved in biosynthesis and secretion of enterobacterial common antigen (ECA) could only be found in the 2 strains that produced ropy defect, and for R. inusitata a set of 2 glycosyltransferase- and flippase genes involved in nucleotide sugar biosynthesis and export could only be identified in the ropy strain. Although these results provide some initial information for potential markers for strains that can cause ropy milk, the relationship between genetic content and ropiness in milk remains poorly understood and merits further investigation.


Assuntos
Genômica , Klebsiella pneumoniae , Rahnella , Animais , Klebsiella pneumoniae/genética , Klebsiella
2.
J Dairy Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004131

RESUMO

Farmstead dairy processing facilities may be particularly susceptible to Listeria spp. contamination due to the close physical proximity of their processing environments (PE) to associated dairy farm environments (FE). In this case study, we supported the implementation of interventions focused on improving (i) cleaning and sanitation efficacy, (ii) hygienic zoning, and (iii) sanitary equipment/facility design and maintenance in a farmstead dairy processing facility, and evaluated their impact on Listeria spp. detection in the farmstead's PE over 1 year. Detection of Listeria spp. in the farmstead's PE was numerically reduced from 50% to 7.5% after 1 year of intervention implementation, suggesting that these interventions were effective at improving Listeria spp. control. In addition, environmental samples were also collected from the farmstead's FE to evaluate the risk of the FE as a potential source of Listeria spp. in the PE. Overall, detection of Listeria spp. was higher in samples collected from the FE (75%, 27/36) compared with samples collected from the PE (24%, 29/120). Whole genome sequencing (WGS) performed on select isolates collected from the PE and FE supported the identification of 6 clusters (range of 3 to 15 isolates per cluster) that showed ≤ 50 high quality single nucleotide polymorphism (hqSNP) differences. Of these 6 clusters, 3 (i.e., clusters 2, 4, and 5) contained isolates that were collected from both the PE and FE, suggesting that transmission between these 2 environments was likely. Moreover, all cluster 2 isolates represented a clonal complex (CC) of L. monocytogenes commonly associated with dairy farm environmental reservoirs (i.e., CC666), which may support that the farmstead's FE represented an upstream source of the cluster 2 isolates that were found in the PE. Overall, our data underscore that, while the FE can represent a potential upstream source of Listeria spp. contamination in a farmstead dairy processing facility, implementation of targeted interventions can help effectively minimize Listeria spp. contamination in the PE.

3.
J Dairy Sci ; 107(6): 3478-3491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38246545

RESUMO

Laboratory pasteurization count (LPC) enumerates thermoduric bacteria and is one parameter used to assess raw milk quality. No regulatory limit has presently been set for LPC, but LPC data are used by some dairy processors and cooperatives to designate raw milk quality premiums paid to farmers and may also be used for troubleshooting bacterial contamination issues. Although it is occasionally used as a proxy for levels of bacterial spores in raw milk, limited knowledge is available on the types of organisms that are enumerated by LPC in contemporary raw milk supplies. Although historical studies have reported that thermoduric bacteria quantified by LPC may predominantly represent gram-positive cocci, updated knowledge on microbial populations enumerated by LPC in contemporary organic raw milk supplies is needed. To address this gap, organic raw milk samples from across the United States (n = 94) were assessed using LPC, and bacterial isolates were characterized. LPC ranged from below detection (<0.70 log cfu/mL) to 4.07 log cfu/mL, with a geometric mean of 1.48 log cfu/mL. Among 380 isolates characterized by 16S rDNA sequencing, 52.6%, 44.5%, and 2.4% were identified as gram-positive sporeformers, gram-positive nonsporeformers, and gram-negatives, respectively; 0.5% could not be categorized into those groups because they could only be assigned a higher level of taxonomy. Isolates identified as gram-positive sporeformers were predominantly Bacillus (168/200), and gram-positive nonsporeformers were predominantly Brachybacterium (56/169) and Kocuria (47/169). To elucidate if the LPC level can be an indicator of the type of thermoduric (e.g., sporeforming bacteria) present in raw milk, we evaluated the proportion of sporeformers in raw milk samples with LPC of ≤100 cfu/mL, 100 to 200 cfu/mL, and ≥200 cfu/mL (51%, 67%, and 35%), showing a trend for sporeformers to represent a smaller proportion of the total thermoduric population when LPC increases, although overall linear regression showed no significant association between the proportion of sporeformers and the LPC concentration. Hence, LPC level alone provides no insight into the makeup of the thermoduric population in raw milk, and further characterization is needed to elucidate the bacterial drivers of elevated LPC in raw milk. We therefore further characterized the isolates from this study using MALDI-TOF mass spectrometry (MALDI-TOF MS), a rapid microbial identification tool that is more readily available to dairy producers than 16S rDNA PCR and sequencing. Although our data indicated agreement between 16S rDNA sequencing and MALDI-TOF MS for 66.6% of isolates at the genus level, 24.2% and 9.2% could not be reliably identified or were mischaracterized using MALDI-TOF MS, respectively. This suggests that further optimization of this method is needed to allow for accurate characterization of thermoduric organisms commonly found in raw milk. Ultimately, our study provides a contemporary perspective on thermoduric bacteria selected by the LPC method and establishes that the LPC alone is not sufficient for identifying the bacterial drivers of LPC levels. Further development of rapid characterization methods that are accessible to producers, cooperatives, and processors will support milk quality troubleshooting efforts and ultimately improve outcomes for dairy industry community members.


Assuntos
Leite , Pasteurização , Esporos Bacterianos , Leite/microbiologia , Animais , Esporos Bacterianos/isolamento & purificação , Contagem de Colônia Microbiana
4.
J Dairy Sci ; 106(3): 1687-1694, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36710187

RESUMO

Bacterial spores, which are found in raw milk, can survive harsh processing conditions encountered in dairy manufacturing, including pasteurization and drying. Low-spore raw milk is desirable for dairy industry stakeholders, especially those who want to extend the shelf life of their product, expand their distribution channels, or reduce product spoilage. A recent previous study showed that an on-farm intervention that included washing towels with chlorine bleach and drying them completely, as well as training milking parlor employees to focus on teat end cleaning, significantly reduced spore levels in bulk tank raw milk. As a follow up to that previous study, here we calculate the costs associated with that previously described intervention as ranging from $9.49 to $13.35 per cow per year, depending on farm size. A Monte Carlo model was used to predict the shelf life of high temperature, short time fluid milk processed from raw milk before and after this low-cost intervention was applied, based on experimental data collected in a previous study. The model predicted that 18.24% of half-gallon containers of fluid milk processed from raw milk receiving no spore intervention would exceed the pasteurized milk ordinance limit of 20,000 cfu/mL by 17 d after pasteurization, while only 16.99% of containers processed from raw milk receiving the spore intervention would reach this level 17 d after pasteurization (a reduction of 1.25 percentage points and a 6.85% reduction). Finally, a survey of consumer milk use was conducted to determine how many consumers regularly consume fluid milk near or past the date printed on the package (i.e., code date), which revealed that over 50% of fluid milk consumers surveyed continue to consume fluid milk after this date, indicating that a considerable proportion of consumers are exposed to fluid milk that is likely to have high levels spore-forming bacterial growth and possibly associated quality defects (e.g., flavor or odor defects). This further highlights the importance of reducing spore levels in raw milk to extend pasteurized fluid milk shelf life and thereby reducing the risk of adverse consumer experiences. Processors who are interested in extending fluid milk shelf life by controlling the levels of spores in the raw milk supply should consider incentivizing low-spore raw milk through premium payments to producers.


Assuntos
Leite , Esporos Bacterianos , Bovinos , Feminino , Animais , Leite/microbiologia , Fazendas , Pasteurização , Indústria de Laticínios , Microbiologia de Alimentos
5.
J Dairy Sci ; 103(5): 4088-4099, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32197847

RESUMO

Spore-forming bacteria, such as Paenibacillus spp. and Bacillus spp., can survive HTST pasteurization in spore form and affect the quality of dairy products (e.g., spoilage in fluid milk). With the demand for higher quality finished products that have longer shelf lives and that can be distributed further and to new markets, dairy processors are becoming interested in obtaining low-spore raw milk supplies. One method to reduce spores in the dairy system will require disrupting the transmission of spores from environmental locations, where they are often found at high concentrations (e.g., manure, bedding), into bulk tank raw milk. Previous research has suggested that cow hygiene factors (e.g., udder hygiene, level of spores in milk from individual cows) are important for the transmission of spores into bulk tank raw milk, suggesting that one potential strategy to reduce spores in bulk tank milk should target cow hygiene in the parlor. To that end, we conducted a study on 5 New York dairy farms over a 15-mo period to evaluate the effect of a combination of intervention strategies, applied together, on the levels of aerobic spores in bulk tank raw milk. The combination of interventions included (1) training milking staff to focus on teat-end cleaning during milking preparation, and (2) implementing changes in laundered towel preparation (i.e., use of detergent, chlorine bleach, and drying). Study design involved collecting bulk tank raw milk samples for a week before and a week after initiating the combination of interventions (i.e., training on the importance of teat-end cleaning and towel treatment). Observations on teat-end condition, udder hygiene scores, and number of kickoffs during milking were also collected for 24 h before and after implementation of the interventions. A total of 355 bulk tank raw milk samples were collected with mean mesophilic and thermophilic spore counts of 2.1 and 2.4 cfu/mL, respectively, before interventions were applied, and 1.6 and 1.5 cfu/mL, respectively, after the interventions were applied. These reductions represent decreases of 37 and 40% in bulk tank raw milk mesophilic spores and thermophilic spores, respectively. Importantly, spore reductions were observed during each of the 3 visits once the interventions were applied, and the largest reduction in spores was recorded for the first sampling after training the milking staff. Further, when a higher proportion of very rough teat ends was observed, bulk tank milk thermophilic spore counts were significantly higher. The intervention strategies tested here represent easy-to-execute cleaning strategies (e.g., focusing on teat-end hygiene and towel washing procedures) that can reduce bulk tank raw milk spore levels. Future studies should validate the effect of on-farm interventions for reduced spore raw milk on corresponding processed product quality and will need to verify the effects of these small changes on product shelf life.


Assuntos
Bovinos , Indústria de Laticínios/métodos , Higiene , Leite/microbiologia , Animais , Contagem de Colônia Microbiana , Feminino , Glândulas Mamárias Animais/microbiologia , New York , Paenibacillus , Pasteurização , Esporos Bacterianos
6.
J Dairy Sci ; 103(7): 6716-6726, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32331892

RESUMO

The sensory quality of fluid milk is of great importance to processors and consumers. Defects in the expected odor, flavor, or body of the product can affect consumer attitudes toward the product and, ultimately, willingness to purchase the product. Although many methods of sensory evaluation have been developed, defect judging is one particular method that has been used for decades in the dairy industry for evaluating fluid milk. Defect judging is a technique whereby panelists are trained to recognize and rate a standard set of fluid milk defects that originate from various sources (e.g., microbial spoilage). This technique is primarily used in processing facilities where identification of sensory defects can alert personnel to potential quality control issues in raw material quality, processing, or good manufacturing practices. In 2014-2016, a preliminary study of defective milk judging screening and training was conducted by the Milk Quality Improvement Program at Cornell University (Ithaca, NY). The study, which included 37 staff and students from the Cornell community, used prescreenings for common odors and basic tastes, followed by uniform training to select, initially train, and retrain defect judges of unflavored high temperature, short time fluid milk. Significant improvements were seen in correct identification of defect attributes following initial training for all defect attributes, with the exception of fruity/fermented. However, following retraining, significant improvements were observed in only 2 defect attributes: cooked and milk carton. These results demonstrate that initial training is important for panelists to correctly identify fluid milk defect attributes, but that subsequent retraining should be tailored toward specific attributes. This study provides a resource for dairy industry stakeholders to use to develop relevant and efficient training methods for fluid milk defect judging panels.


Assuntos
Indústria de Laticínios , Qualidade dos Alimentos , Leite , Adolescente , Adulto , Animais , Comportamento do Consumidor , Indústria de Laticínios/educação , Indústria de Laticínios/organização & administração , Feminino , Temperatura Alta , Humanos , Julgamento , Masculino , Pessoa de Meia-Idade , Odorantes , Paladar , Adulto Jovem
7.
J Dairy Sci ; 102(11): 9689-9701, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31447152

RESUMO

Sporeforming bacteria are responsible for the spoilage of several dairy products including fluid milk, cheese, and products manufactured using dried dairy powders as ingredients. Sporeforming bacteria represent a considerable challenge for the dairy industry because they primarily enter the dairy product continuum at the farm, survive processing hurdles, and subsequently grow in finished products. As such, strategies to reduce spoilage due to this group of bacterial contaminants have focused on understanding the effect of farm level factors on the presence of spores in bulk tank raw milk with the goal of reducing spore levels in raw milk, as well as understanding processing contributions to spore levels and outgrowth in finished products. The goal of the current study was to investigate sources of spores in the farm environment and survey farm management practices to identify variables using multimodel inference, a model averaging approach that eliminates the uncertainty of traditional model selection approaches, that affect the presence and levels of spores in bulk tank raw milk. To this end, environmental samples including feed, bedding, manure, soil, water, and so on, and bulk tank raw milk were collected twice from 17 upstate New York dairy farms over a 19-mo period and the presence and levels of various spore types (e.g., psychrotolerant, mesophilic, thermophilic, highly heat resistant thermophilic, specially thermoresistant thermophilic, and anaerobic butyric acid bacteria) were assessed. Manure had the highest level of spores for 4 out of 5 aerobic spore types with mean counts of 5.87, 5.22, 4.35, and 3.68 log cfu/g of mesophilic, thermophilic, highly heat resistant thermophilic, and specially thermoresistant thermophilic spores, respectively. In contrast, bulk tank raw milk had mean spore levels below 1 log cfu/mL across spore types. Multimodel inference was used to determine variables (i.e., management factors, environmental spore levels, and meteorological data from each sampling) that were important for presence or levels of each spore type in bulk tank raw milk. Analyses indicated that variables of importance for more than one spore type included the residual level of spores in milk from individual cows after thorough teat cleaning and forestripping, udder hygiene, clipping or flaming of udders, spore level in feed commodities, spore level in parlor air, how often bedding was topped up or changed, the use of recycled manure bedding, and the use of sawdust bedding. These results improve our understanding of how spores transfer from environmental sources into bulk tank raw milk and provide information that can be used to design intervention trials aimed at reducing spore levels in raw milk.


Assuntos
Indústria de Laticínios , Leite/microbiologia , Esporos Bacterianos/crescimento & desenvolvimento , Ração Animal/microbiologia , Animais , Bovinos , Indústria de Laticínios/métodos , Indústria de Laticínios/normas , Água Potável/microbiologia , Fazendas , Feminino , Abrigo para Animais/normas , Higiene , Estudos Longitudinais , Esterco/microbiologia , New York , Microbiologia do Solo
8.
J Dairy Sci ; 102(7): 5979-6000, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31128867

RESUMO

Some gram-negative bacteria, including Pseudomonas spp., can grow at refrigeration temperatures and cause flavor, odor, and texture defects in fluid milk. Historical and modern cases exist of gray and blue color defects in fluid milk due to Pseudomonas, and several recent reports have detailed fresh cheese spoilage associated with blue-pigment-forming Pseudomonas. Our goal was to investigate the genomes of pigmented Pseudomonas isolates responsible for historical and modern pigmented spoilage of dairy products in the United States to determine the genetic basis of pigment-forming phenotypes. We performed whole genome sequencing of 9 Pseudomonas isolates: 3 from recent incidents of gray-pigmented fluid milk (Pseudomonas fluorescens group), 1 from blue-pigmented cheese (P. fluorescens group), 2 from a historical blue milk spoilage incident (Pseudomonas putida group), and 3 with no evidence for blue or gray pigment formation (2 from P. fluorescens group and 1 from Pseudomonas chlororaphis group). All 6 isolates collected from products with a gray or blue pigment defect were confirmed to produce pigment using potato dextrose agar or pasteurized milk. A subset of 2 isolates was selected for inoculation into milk and onto the surface of a model cheese for subsequent color measurement. These isolates produced different colors on potato dextrose agar, but produced nearly identical color defects in milk and on model cheese. For the same subset of 2 isolates, the gray color defect in milk was produced only in containers with ample headspace and not in full containers, suggesting that oxygen is vital for pigment formation. This work also demonstrated that a Pseudomonas isolate from cheese can produce a pigment defect in milk, and vice versa. Comparative genomics identified an accessory locus encoding tryptophan biosynthesis genes that was present in all isolates that produced gray or blue pigment under laboratory conditions and was only previously reported in 2 P. fluorescens isolates responsible for blue mozzarella in Italy. Because this locus was found in genetically distant isolates belonging to different Pseudomonas species groups, it may have been acquired via horizontal gene transfer. These data suggest that several past and present gray- or blue-pigmented dairy spoilage events share a common genetic etiology that transcends species-level identification and merits further investigation to determine mechanistic details and modes of prevention.


Assuntos
Queijo/análise , Genoma Bacteriano/fisiologia , Leite/química , Pseudomonas fluorescens/genética , Pseudomonas putida/genética , Animais , Queijo/microbiologia , Cor , Loci Gênicos/fisiologia , Genômica , Itália , Leite/microbiologia , Fenótipo , Pigmentação , Pigmentos Biológicos/biossíntese , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/metabolismo
9.
J Dairy Sci ; 101(9): 7746-7756, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29908800

RESUMO

Microbial spoilage of pasteurized fluid milk is typically due to either (1) postpasteurization contamination (PPC) with psychrotolerant gram-negative bacteria (predominantly Pseudomonas) or (2) growth of psychrotolerant sporeformers (e.g., Paenibacillus) that have the ability to survive pasteurization when present as spores in raw milk, and to subsequently grow at refrigeration temperatures. While fluid milk quality has improved over the last several decades, continued reduction of PPC is hampered by the lack of rapid, sensitive, and specific methods that allow for detection of PPC in fluid milk, with fluid milk processors still often using time-consuming methods (e.g., Moseley keeping quality test). The goal of this project was to utilize a set of commercial fluid milk samples that are characterized by a mixture of samples with PPC due to psychrotolerant gram-negative bacteria and samples with presence and growth of psychrotolerant sporeforming bacteria to evaluate different approaches for rapid detection of PPC. Comprehensive microbiological shelf-life characterization of 105 pasteurized fluid milk samples obtained from 20 dairy processing plants showed that 60/105 samples reached bacterial counts >20,000 cfu/mL over the shelf-life due to PPC with gram-negative bacteria. Among these 60 samples with evidence of gram-negative PPC spoilage over the shelf-life, 100% (60/60) showed evidence of contamination with noncoliform, non-Enterobacteriaceae (EB) gram-negative bacteria (e.g., Pseudomonas), 20% (12/60) showed evidence of contamination with coliforms, and 7% (4/60) showed evidence of contamination with noncoliform EB. Among the remaining 45 samples, 28 showed levels of gram-positive bacteria above 20,000 cfu/mL and the remaining 17 samples did not exceed 20,000 cfu/mL over the shelf-life. Evaluation of the same set of 105 samples using 6 different approaches {all possible combinations of 2 different enrichment protocols (13°C or 21°C for 18 h) and 3 different plating media [crystal violet tetrazolium agar, EB Petrifilm (3M, St. Paul, MN), and Coliform Petrifilm]} showed that enrichment at 21°C for 18 h, followed by plating on crystal violet tetrazolium agar provided for the most sensitive, accelerated detection of samples that reached >20,000 cfu/mL due to PPC with psychrotolerant gram-negatives (70% sensitivity). These results show that tests still required and traditionally used in the dairy industry (e.g., coliform testing) are not suitable for monitoring for PPC. Rather, approaches that allow for detection of all gram-negative bacteria are essential for improved detection of PPC in fluid milk.


Assuntos
Carga Bacteriana , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Leite/microbiologia , Animais , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Paenibacillus , Pasteurização , Temperatura
10.
J Dairy Sci ; 101(1): 861-870, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29103726

RESUMO

Fluid milk quality in the United States has improved steadily over the last 2 decades, in large part due to the reduction in post-pasteurization contamination (PPC). Despite these improvements, some studies suggest that almost 50% of fluid milk still shows evidence of PPC with organisms that are able to grow at 6°C, even though PPC may be much less frequent in some facilities. Several gram-negative bacteria, when introduced as PPC, can grow rapidly at refrigeration temperatures around 6°C and can lead to bacterial levels above 20,000 cfu/mL (the regulatory limit for bacterial numbers in fluid milk in the United States) and spoilage that can be detected sensorially within 7 to 10 d of processing. Importantly, however, storage temperature can have a considerable effect on microbial growth, and fluid milk stored at 4°C and below may show considerably delayed onset of microbial growth and spoilage compared with samples stored at what may be considered mild abuse (6°C and above). Notable organisms that cause PPC and grow at refrigeration temperatures include psychrotolerant Enterobacteriaceae and coliforms, as well as Pseudomonas. These organisms are known to produce a variety of enzymes that lead to flavor, odor, and body defects that can ultimately affect consumer perception and willingness to buy. Detecting PPC in high temperature, short time, freshly pasteurized fluid milk can be challenging because PPC often occurs sporadically and at low levels. Additionally, indicator organisms typically used in fluid milk (i.e., coliforms) have been shown to represent only a fraction of the total PPC. Recent studies indicate that coliforms account for less than 20% of the total gram-negative organisms introduced into fluid milk after pasteurization. In contrast, Pseudomonas, which is not a coliform and therefore is not detected using coliform media, is the most commonly isolated genus in PPC fluid milk. To reduce PPC, processors must (1) use testing methods that can detect both coliforms and non-coliform gram-negatives (i.e., Pseudomonas) to understand true contamination rates and patterns, and (2) establish cleaning and sanitation protocols and employee and management behaviors that target persistent and transient PPC organisms.


Assuntos
Bactérias/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Leite/química , Leite/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos , Humanos , Pasteurização , Controle de Qualidade , Paladar
11.
J Dairy Sci ; 100(10): 7906-7909, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28755936

RESUMO

Pseudomonas species are well recognized as dairy product spoilage organisms, particularly due to their ability to grow at refrigeration temperatures. Although Pseudomonas-related spoilage usually manifests itself in flavor, odor, and texture defects, which are typically due to production of bacterial enzymes, Pseudomonas is also reported to cause color defects. Because of consumer complaints, a commercial dairy company shipped 4 samples of high temperature, short time (HTST)-pasteurized milk with distinctly gray colors to our laboratory. Bacterial isolates from all 4 samples were identified as Pseudomonas azotoformans. All isolates shared the same partial 16S rDNA sequence and showed black pigmentation on Dichloran Rose Bengal Chloramphenicol agar. Inoculation of one pigment-producing P. azotoformans isolate into HTST-pasteurized fluid milk led to development of gray milk after 14 d of storage at 6°C, but only in containers that had half of the total volume filled with milk (∼500 mL of milk in ∼1,000-mL bottles). We conclusively demonstrate that Pseudomonas can cause a color defect in fluid milk that manifests in gray discoloration, adding to the palette of color defects known to be caused by Pseudomonas. This information is of considerable interest to the dairy industry, because dairy processors and others may not typically associate black or gray colors in fluid milk with the presence of microbial contaminants but rather with product tampering (e.g., addition of ink) or other inadvertent chemical contamination.


Assuntos
Temperatura Alta , Leite/microbiologia , Pasteurização , Pigmentação , Pseudomonas/isolamento & purificação , Animais , DNA Ribossômico/genética , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , Refrigeração
12.
Int J Syst Evol Microbiol ; 66(11): 4744-4753, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27520992

RESUMO

A facultatively anaerobic, spore-forming Bacillus strain, FSL W8-0169T, collected from raw milk stored in a silo at a dairy powder processing plant in the north-eastern USA was initially identified as a Bacillus cereus group species based on a partial sequence of the rpoB gene and 16S rRNA gene sequence. Analysis of core genome single nucleotide polymorphisms clustered this strain separately from known B. cereus group species. Pairwise average nucleotide identity blast values obtained for FSL W8-0169T compared to the type strains of existing B. cereus group species were <95 % and predicted DNA-DNA hybridization values were <70 %, suggesting that this strain represents a novel B. cereus group species. We characterized 10 additional strains with the same or closely related rpoB allelic type, by whole genome sequencing and phenotypic analyses. Phenotypic characterization identified a higher content of iso-C16 : 0 fatty acid and the combined inability to ferment sucrose or to hydrolyse arginine as the key characteristics differentiating FSL W8-0169T from other B. cereus group species. FSL W8-0169T is psychrotolerant, produces haemolysin BL and non-haemolytic enterotoxin, and is cytotoxic in a HeLa cell model. The name Bacillus wiedmannii sp. nov. is proposed for the novel species represented by the type strain FSL W8-0169T (=DSM 102050T=LMG 29269T).


Assuntos
Bacillus/classificação , Laticínios/microbiologia , Filogenia , Bacillus/genética , Bacillus/isolamento & purificação , Bacillus cereus/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Indústria de Laticínios , Ácidos Graxos/química , Células HeLa , Humanos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Estados Unidos
13.
J Dairy Sci ; 99(12): 10128-10149, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27665134

RESUMO

This article provides an overview of the influence of raw milk quality on the quality of processed dairy products and offers a perspective on the merits of investing in quality. Dairy farmers are frequently offered monetary premium incentives to provide high-quality milk to processors. These incentives are most often based on raw milk somatic cell and bacteria count levels well below the regulatory public health-based limits. Justification for these incentive payments can be based on improved processed product quality and manufacturing efficiencies that provide the processor with a return on their investment for high-quality raw milk. In some cases, this return on investment is difficult to measure. Raw milks with high levels of somatic cells and bacteria are associated with increased enzyme activity that can result in product defects. Use of raw milk with somatic cell counts >100,000cells/mL has been shown to reduce cheese yields, and higher levels, generally >400,000 cells/mL, have been associated with textural and flavor defects in cheese and other products. Although most research indicates that fairly high total bacteria counts (>1,000,000 cfu/mL) in raw milk are needed to cause defects in most processed dairy products, receiving high-quality milk from the farm allows some flexibility for handling raw milk, which can increase efficiencies and reduce the risk of raw milk reaching bacterial levels of concern. Monitoring total bacterial numbers in regard to raw milk quality is imperative, but determining levels of specific types of bacteria present has gained increasing importance. For example, spores of certain spore-forming bacteria present in raw milk at very low levels (e.g., <1/mL) can survive pasteurization and grow in milk and cheese products to levels that result in defects. With the exception of meeting product specifications often required for milk powders, testing for specific spore-forming groups is currently not used in quality incentive programs in the United States but is used in other countries (e.g., the Netherlands).


Assuntos
Leite/microbiologia , Pasteurização , Animais , Bactérias , Carga Bacteriana , Queijo , Contagem de Colônia Microbiana , Manipulação de Alimentos
14.
J Dairy Sci ; 98(11): 7640-3, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342986

RESUMO

As fluid milk processors continue to reduce microbial spoilage in fluid milk through improved control of postpasteurization contamination and psychrotolerant sporeformer outgrowth, it is necessary to identify strategies to further improve the quality and extend the shelf life of fluid milk products that are high-temperature, short-time pasteurized. Solutions that optimize product quality, and are economically feasible, are of particular interest to the dairy industry. To this end, this study examined the effects of raw milk holding time and temperature of pasteurized milk storage over shelf life on bacterial growth. In 3 independent replicates, raw milk was stored for 24 and 72 h before pasteurization at 76°C for 25s and then incubated at 3 different storage conditions: (1) 4°C for 21d; (2) 4°C for the first 48 h, then 6°C for the duration of the 21-d shelf life; or (3) 6°C for 21d. Total bacteria counts were assessed initially and on d 7, 14, and 21. No substantial difference in bacterial growth over shelf life was observed between samples processed from raw milk held for 24 versus 72 h. A significantly lower bacterial load was seen at d 21 after pasteurization in samples held at 4°C, versus 4°C for the first 48 h followed by 6°C for the duration of the 21-d shelf life and samples held at 6°C for 21d. This work demonstrates the importance of maintaining control of the fluid milk cold chain throughout postpasteurization, transportation, and retail storage on fluid milk microbial quality.


Assuntos
Temperatura Baixa , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Leite/microbiologia , Pasteurização , Animais , Carga Bacteriana , Contagem de Colônia Microbiana , Armazenamento de Alimentos , Fatores de Tempo
15.
J Dairy Sci ; 98(12): 8492-504, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26476952

RESUMO

To accommodate stringent spore limits mandated for the export of dairy powders, a more thorough understanding of the spore species present will be necessary to develop prospective strategies to identify and reduce sources (i.e., raw materials or in-plant) of contamination. We characterized 1,523 spore isolates obtained from bulk tank raw milk (n=33 farms) and samples collected from 4 different dairy powder-processing plants producing acid whey, nonfat dry milk, sweet whey, or whey protein concentrate 80. The spores isolated comprised 12 genera, at least 44 species, and 216 rpoB allelic types. Bacillus and Geobacillus represented the most commonly isolated spore genera (approximately 68.9 and 12.1%, respectively, of all spore isolates). Whereas Bacillus licheniformis was isolated from samples collected from all plants and farms, Geobacillus spp. were isolated from samples from 3 out of 4 plants and just 1 out of 33 farms. We found significant differences between the spore population isolated from bulk tank raw milk and those isolated from dairy powder plant samples, except samples from the plant producing acid whey. A comparison of spore species isolated from raw materials and finished powders showed that although certain species, such as B. licheniformis, were found in both raw and finished product samples, other species, such as Geobacillus spp. and Anoxybacillus spp., were more frequently isolated from finished powders. Importantly, we found that 8 out of 12 genera were isolated from at least 2 different spore count methods, suggesting that some spore count methods may provide redundant information if used in parallel. Together, our results suggest that (1) Bacillus and Geobacillus are the predominant spore contaminants in a variety of dairy powders, implying that future research efforts targeted at elucidating approaches to reduce levels of spores in dairy powders should focus on controlling levels of spore isolates from these genera; and (2) the spore populations isolated from bulk tank raw milk and some dairy powder products are significantly different, suggesting that targeting in-plant sources of contamination may be important for achieving low spore counts in the finished product. These data provide important insight regarding the diversity of spore populations isolated from dairy powders and bulk tank raw milk, and demonstrate that several spore genera are detected by multiple spore count methods.


Assuntos
Alimentos em Conserva/microbiologia , Leite/microbiologia , Esporos Bacterianos/isolamento & purificação , Animais , Bacillaceae/classificação , Contagem de Colônia Microbiana/métodos , Fibras na Dieta , Pós , Esporos Bacterianos/classificação
16.
BMC Genomics ; 15: 26, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24422886

RESUMO

BACKGROUND: Sporeformers in the order Bacillales are important contributors to spoilage of pasteurized milk. While only a few Bacillus and Viridibacillus strains can grow in milk at 6°C, the majority of Paenibacillus isolated from pasteurized fluid milk can grow under these conditions. To gain a better understanding of genomic features of these important spoilage organisms and to identify candidate genomic features that may facilitate cold growth in milk, we performed a comparative genomic analysis of selected dairy associated sporeformers representing isolates that can and cannot grow in milk at 6°C. RESULTS: The genomes for seven Paenibacillus spp., two Bacillus spp., and one Viridibacillus sp. isolates were sequenced. Across the genomes sequenced, we identified numerous genes encoding antimicrobial resistance mechanisms, bacteriocins, and pathways for synthesis of non-ribosomal peptide antibiotics. Phylogenetic analysis placed genomes representing Bacillus, Paenibacillus and Viridibacillus into three distinct well supported clades and further classified the Paenibacillus strains characterized here into three distinct clades, including (i) clade I, which contains one strain able to grow at 6°C in skim milk broth and one strain not able to grow under these conditions, (ii) clade II, which contains three strains able to grow at 6°C in skim milk broth, and (iii) clade III, which contains two strains unable to grow under these conditions. While all Paenibacillus genomes were found to include multiple copies of genes encoding ß-galactosidases, clade II strains showed significantly higher numbers of genes encoding these enzymes as compared to clade III strains. Genome comparison of strains able to grow at 6°C and strains unable to grow at this temperature identified numerous genes encoding features that might facilitate the growth of Paenibacillus in milk at 6°C, including peptidases with cold-adapted features (flexibility and disorder regions in the protein structure) and cold-adaptation related proteins (DEAD-box helicases, chaperone DnaJ). CONCLUSIONS: Through a comparative genomics approach we identified a number of genomic features that may relate to the ability of selected Paenibacillus strains to cause spoilage of refrigerated fluid milk. With additional experimental evidence, these data will facilitate identification of targets to detect and control Gram positive spore formers in fluid milk.


Assuntos
Bacillus/genética , Genoma Bacteriano , Leite/microbiologia , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Bacillus/classificação , Bacillus/isolamento & purificação , Bacillus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bovinos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Farmacorresistência Bacteriana/genética , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Paenibacillus/fisiologia , Fenótipo , Filogenia , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
17.
J Food Prot ; 87(4): 100254, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38417482

RESUMO

Small- and medium-sized dairy processing facilities (SMDFs) may face unique challenges with respect to controlling Listeria in their processing environments, e.g., due to limited resources. The aim of this study was to implement and evaluate environmental monitoring programs (EMPs) for Listeria control in eight SMDFs in a ∼1-year longitudinal study; this included a comparison of pre-operation (i.e., after cleaning and sanitation and prior to production) and mid-operation (i.e., at least 4 h into production) sampling strategies. Among 2,072 environmental sponge samples collected across all facilities, 272 (13%) were positive for Listeria. Listeria prevalence among pre- and mid-operation samples (15% and 17%, respectively), was not significantly different. Whole genome sequencing (WGS) performed on select isolates to characterize Listeria persistence patterns revealed repeated isolation of closely related Listeria isolates (i.e., ≤20 high-quality single nucleotide polymorphism [hqSNP] differences) in 5/8 facilities over >6 months, suggesting Listeria persistence and/or reintroduction was relatively common among the SMDFs evaluated here. WGS furthermore showed that for 41 sites where samples collected pre- and mid-operation were positive for Listeria, Listeria isolates obtained were highly related (i.e., ≤10 hqSNP differences), suggesting that pre-operation sampling alone may be sufficient and more effective for detecting sites of Listeria persistence. Importantly, our data also showed that only 1/8 of facilities showed a significant decrease in Listeria prevalence over 1 year, indicating continued challenges with Listeria control in at least some SMDFs. We conclude that options for simplified Listeria EMPs (e.g., with a focus on pre-operation sampling, which allows for more rapid identification of likely persistence sites) may be valuable for improved Listeria control in SMDFs.


Assuntos
Listeria monocytogenes , Listeria , Microbiologia de Alimentos , Listeria monocytogenes/genética , Estudos Longitudinais , Monitoramento Ambiental
18.
JDS Commun ; 4(2): 65-69, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36974217

RESUMO

Butterfat and protein complicate attempts to extract bacterial cells from milk by centrifugation for use in basic microscopy. Some types of bacteria preferentially separate into the butterfat layer upon centrifugation and are lost when this layer is discarded, and the action of bacterial protease enzymes can cause milk proteins to precipitate and partition into the centrifugal pellet. Butterfat and precipitated protein remaining in the centrifugal pellet along with the desired bacterial cells can confound the results of differential staining and microscopy. Oat- and other plant-based beverages, which are often manufactured by dairy processors on shared equipment, present similar hurdles to bacterial extraction and microscopic visualization because of the presence of oils, starch granules, and dietary fiber particles in these products. Herein we describe methods for centrifugal separation of bacterial cells for microscopy from unflavored milk, chocolate milk, and oat-based beverage. Cell suspensions prepared through these methods were used for phase-contrast microscopy, Gram staining, and viability staining. These techniques can be used to provide rapid, culture-independent diagnostic information when bacterial cells are expected to be present in high concentrations, as in the event of sporadic product spoilage or mass product spoilage incidents.

19.
Appl Environ Microbiol ; 78(6): 1853-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247129

RESUMO

Psychrotolerant spore-forming bacteria represent a major challenge to the goal of extending the shelf life of pasteurized dairy products. The objective of this study was to identify prominent phylogenetic groups of dairy-associated aerobic sporeformers and to characterize representative isolates for phenotypes relevant to growth in milk. Analysis of sequence data for a 632-nucleotide fragment of rpoB showed that 1,288 dairy-associated isolates (obtained from raw and pasteurized milk and from dairy farm environments) clustered into two major divisions representing (i) the genus Paenibacillus (737 isolates, including the species Paenibacillus odorifer, Paenibacillus graminis, and Paenibacillus amylolyticus sensu lato) and (ii) Bacillus (n = 467) (e.g., Bacillus licheniformis sensu lato, Bacillus pumilus, Bacillus weihenstephanensis) and genera formerly classified as Bacillus (n = 84) (e.g., Viridibacillus spp.). When isolates representing the most common rpoB allelic types (ATs) were tested for growth in skim milk broth at 6°C, 6/9 Paenibacillus isolates, but only 2/8 isolates representing Bacillus subtypes, grew >5 log CFU/ml over 21 days. In addition, 38/40 Paenibacillus isolates but only 3/47 Bacillus isolates tested were positive for ß-galactosidase activity (including some isolates representing Bacillus licheniformis sensu lato, a common dairy-associated clade). Our study confirms that Paenibacillus spp. are the predominant psychrotolerant sporeformers in fluid milk and provides 16S rRNA gene and rpoB subtype data and phenotypic characteristics facilitating the identification of aerobic spore-forming spoilage organisms of concern. These data will be critical for the development of detection methods and control strategies that will reduce the introduction of psychrotolerant sporeformers and extend the shelf life of dairy products.


Assuntos
Bacillus/citologia , Bacillus/isolamento & purificação , Manipulação de Alimentos , Leite/microbiologia , Paenibacillus/citologia , Paenibacillus/isolamento & purificação , Esporos Bacterianos/citologia , Animais , Bacillus/classificação , Bacillus/crescimento & desenvolvimento , Análise por Conglomerados , Temperatura Baixa , Contagem de Colônia Microbiana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Polimerases Dirigidas por DNA/genética , Paenibacillus/classificação , Paenibacillus/crescimento & desenvolvimento , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , beta-Galactosidase/metabolismo
20.
J Food Prot ; 84(9): 1496-1511, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770185

RESUMO

ABSTRACT: Spoilage of high-temperature, short-time (HTST)- and vat-pasteurized fluid milk due to the introduction of gram-negative bacteria postpasteurization remains a challenge for the dairy industry. Although processing facility-level practices (e.g., sanitation practices) are known to impact the frequency of postpasteurization contamination (PPC), the relative importance of different practices is not well defined, thereby affecting the ability of facilities to select intervention targets that reduce PPC and provide the greatest return on investment. Thus, the goal of this study was to use an existing longitudinal data set of bacterial spoilage indicators obtained for pasteurized fluid milk samples collected from 23 processing facilities between July 2015 and November 2017 (with three to five samplings per facility) and data from a survey on fluid milk quality management practices, to identify factors associated with PPC and rank their relative importance. This ranking was accomplished using two separate approaches: multimodel inference and conditional random forest. Data preprocessing for multimodel inference analysis showed (i) nearly all factors were significantly associated with PPC when assessed individually using univariable logistic regression and (ii) numerous pairs of factors were strongly associated with each other (Cramer's V ≥ 0.80). Multimodel inference and conditional random forest analyses identified similar drivers associated with PPC; factors identified as most important based on these analyses included cleaning and sanitation practices, activities related to good manufacturing practices, container type (a proxy for different filling equipment), in-house finished product testing, and designation of a quality department, indicating potential targets for reducing PPC. In addition, this study illustrates how machine learning approaches can be used with highly correlated and unbalanced data, as typical for food safety and quality, to facilitate improved data analyses and decision making.


Assuntos
Contaminação de Alimentos , Leite , Animais , Bactérias , Indústria de Laticínios , Contaminação de Alimentos/análise , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA