RESUMO
Threadfins (Teleostei: Polynemidae) are a group of fishes named for their elongated and threadlike pectoral-fin rays. These fishes are commonly found in the world's tropical and subtropical waters, and are an economically important group for people living in these regions, with more than 100,000 t harvested in recent years. However, we do not have a detailed understanding of polynemid evolutionary history such that these fishes can be monitored, managed and conserved as an important tropical food source. Recent studies hypothesize at least one genus of threadfins is polyphyletic, and no studies have focused on generating a hypothesis of relationship for the Polynemidae using DNA sequences. In this study, we analyse a genomic dataset of ultraconserved-element and mitochondrial loci to construct a phylogeny of the Polynemidae. We recover the threadfins as a clade sister to flatfishes, with the most taxonomically rich genus, Polydactylus, being resolved as polyphyletic. When comparing our dataset to data from previous studies, we find that a few recent broad-scale phylogenies of fishes have incorporated mislabelled, misidentified or chimeric terminals into their analyses, impacting the relationships of threadfins they recover. We highlight these problematic sequences, providing revised identifications based on the data sequenced in this study. We then discuss the intrarelationships of threadfins, highlighting morphological or ecological characters that support the clades we recover.
Assuntos
Evolução Biológica , Linguados , Animais , Peixes , Linguados/genética , Genoma , Genômica , Humanos , FilogeniaRESUMO
The interaction of actin and myosin is essential for cell migration. We have identified kaempferol and pentahalogenated pseudilins as efficient inhibitors of migration of MDA-MB-231 breast adenocarcinoma cells. The compounds were studied with respect to possible effects on myosin-2-ATPase activity. The pentahalogenated pseudilins inhibited the enzyme activity in vitro. Flavonoids showed no effect on enzyme activity. The polymerization dynamics of actin was measured to test whether the integrity of F-actin is essential for the migration of MDA-MB-231 cells. Quercetin and kaempferol depolymerized F-actin with similar efficiencies as found for the pentahalogenated pseudilins, whereas epigallocatechin showed the weakest effect. As the inhibitory effect on cell migration may be caused by a toxic effect, we have performed a cytotoxicity test and, furthermore, investigated the influence of the test compounds on cardiac function in eleutheroembryos of medaka (Oryzias latipes). Compared with the pentahalogenated pseudilins, the cytotoxic and cardiotoxic effects of flavonoids on medaka embryos were found to be moderate.
Assuntos
Actinas/antagonistas & inibidores , Quempferóis/farmacologia , Miosinas/antagonistas & inibidores , Quercetina/farmacologia , Actinas/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Quempferóis/química , Estrutura Molecular , Miosinas/metabolismo , Quercetina/química , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Transforming growth factor-ß (TGF-ß) is known to play a critical role in the pathogenesis of many progressive podocyte diseases. However, the molecular mechanisms regulating TGF-ß signaling in podocytes remain unclear. Using a podocyte-specific myosin (Myo)1c knockout, we demonstrate whether Myo1c is critical for TGF-ß-signaling in podocyte disease pathogenesis. Specifically, podocyte-specific Myo1c knockout mice were resistant to fibrotic injury induced by Adriamycin or nephrotoxic serum. Further, loss of Myo1c also protected from injury in the TGF-ß-dependent unilateral ureteral obstruction mouse model of renal interstitial fibrosis. Mechanistic analyses showed that loss of Myo1c significantly blunted TGF-ß signaling through downregulation of canonical and non-canonical TGF-ß pathways. Interestingly, nuclear rather than the cytoplasmic Myo1c was found to play a central role in controlling TGF-ß signaling through transcriptional regulation. Differential expression analysis of nuclear Myo1c-associated gene promoters showed that nuclear Myo1c targeted the TGF-ß responsive gene growth differentiation factor (GDF)-15 and directly bound to the GDF-15 promoter. Importantly, GDF15 was found to be involved in podocyte pathogenesis, where GDF15 was upregulated in glomeruli of patients with focal segmental glomerulosclerosis. Thus, Myo1c-mediated regulation of TGF-ß-responsive genes is central to the pathogenesis of podocyte injury. Hence, inhibiting this process may have clinical application in treating podocytopathies.
Assuntos
Fator 15 de Diferenciação de Crescimento/genética , Nefropatias/patologia , Miosina Tipo I/metabolismo , Podócitos/patologia , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Modelos Animais de Doenças , Doxorrubicina/toxicidade , Feminino , Fibrose , Regulação da Expressão Gênica , Humanos , Nefropatias/induzido quimicamente , Masculino , Camundongos , Camundongos Knockout , Miosina Tipo I/genética , Podócitos/efeitos dos fármacos , Regiões Promotoras Genéticas , Transcrição GênicaRESUMO
Classâ 1 myosins (Myo1s) were the first unconventional myosins identified and humans have eight known Myo1 isoforms. The Myo1 family is involved in the regulation of gene expression, cytoskeletal rearrangements, delivery of proteins to the cell surface, cell migration and spreading. Thus, the important role of Myo1s in different biological processes is evident. In this study, we have investigated the effects of pentachloropseudilin (PClP), a reversible and allosteric potent inhibitor of Myo1s, on angiogenesis. We demonstrated that treatment of cells with PClP promoted a decrease in the number of vessels. The observed inhibition of angiogenesis is likely to be related to the inhibition of cell proliferation, migration and adhesion, as well as to alteration of the actin cytoskeleton pattern, as shown on a PClP-treated HUVEC cell line. Moreover, we also demonstrated that PClP treatment partially prevented the delivery of integrins to the plasma membrane. Finally, we showed that PClP caused DNA strand breaks, which are probably repaired during the cell cycle arrest in the G1 phase. Taken together, our results suggest that Myo1s participate directly in the angiogenesis process.
Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Ciclo Celular/efeitos dos fármacos , Hidrocarbonetos Clorados/farmacologia , Integrinas/metabolismo , Pirróis/farmacologia , Inibidores da Angiogênese/toxicidade , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrocarbonetos Clorados/toxicidade , Integrinas/genética , Miosina Tipo I/metabolismo , Pirróis/toxicidade , RNA Mensageiro/metabolismoRESUMO
Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression.
Assuntos
Células Epiteliais Alveolares/fisiologia , Exocitose , Miosina Tipo I/metabolismo , Vesículas Secretórias/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Secreções Corporais , Células Cultivadas , Exocitose/genética , Masculino , Fusão de Membrana/genética , Miosina Tipo I/genética , Surfactantes Pulmonares/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Pentachloropseudilin (PClP) is a chlorinated phenylpyrrole compound that was first isolated from Actinoplanes (ATCC33002), and its structure has been confirmed by chemical synthesis. PClP shows broad antimicrobial activity against Gram-negative and Gram-positive bacteria, protozoa, fungi, and yeast. In mammalian cells, PClP is known to act as a reversible and allosteric inhibitor of myosinâ 1c (Myo1c). Herein, we report that PCIP is a potent inhibitor of transforming growth factor-ß (TGF-ß)-stimulated signaling. PCIP inhibits TGF-ß-stimulated Smad2/3 phosphorylation and plasminogen activator inhibitor-1 (PAI-1) promoter activation with an IC50 of 0.1â µm in target cells (A549, HepG2, and Mv1Lu cells). In addition, PCIP attenuates TGF-ß-stimulated expression of vimentin, N-cadherin, and fibronectin and, thus, blocks TGF-ß-induced epithelial to mesenchymal transition (EMT) in these cells. Furthermore, cell-surface labeling and immunoblot analysis indicates that PCIP suppresses TGF-ß-stimulated cellular responses by attenuating cell-surface expression of the typeâ II TGF-ß receptor through accelerating caveolae-mediated internalization followed by primarily lysosome-dependent degradation of the receptor, as demonstrated by sucrose density gradient analysis and immune fluorescence staining.
Assuntos
Hidrocarbonetos Clorados/farmacologia , Pirróis/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo II/agonistas , Fator de Crescimento Transformador beta/efeitos dos fármacos , Animais , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
Massive parallel sequencing allows scientists to gather DNA sequences composed of millions of base pairs that can be combined into large datasets and analyzed to infer organismal relationships at a genome-wide scale in non-model organisms. Although the use of these large datasets is becoming more widespread, little to no work has been done in estimating phylogenetic relationships using UCEs in deep-sea fishes. Among deep-sea animals, the 257 species of lanternfishes (Myctophiformes) are among the most important open-ocean lineages, representing half of all mesopelagic vertebrate biomass. With this relative abundance, they are key members of the midwater food web where they feed on smaller invertebrates and fishes in addition to being a primary prey item for other open-ocean animals. Understanding the evolution and relationships of midwater organisms generally, and this dominant group of fishes in particular, is necessary for understanding and preserving the underexplored deep-sea ecosystem. Despite substantial congruence in the evolutionary relationships among deep-sea lanternfishes at higher classification levels in previous studies, the relationships among tribes, genera, and species within Myctophidae often conflict across phylogenetic studies or lack resolution and support. Herein we provide the first genome-scale phylogenetic analysis of lanternfishes, and we integrate these data from across the nuclear genome with additional protein-coding gene sequences and morphological data to further test evolutionary relationships among lanternfishes. Our phylogenetic hypotheses of relationships among lanternfishes are entirely congruent across a diversity of analyses that vary in methods, taxonomic sampling, and data analyzed. Within the Myctophiformes, the Neoscopelidae is inferred to be monophyletic and sister to a monophyletic Myctophidae. The current classification of lanternfishes is incongruent with our phylogenetic tree, so we recommend revisions that retain much of the traditional tribal structure and recognize five subfamilies instead of the traditional two subfamilies. The revised monophyletic taxonomy of myctophids includes the elevation of three former lampanyctine tribes to subfamilies. A restricted Lampanyctinae was recovered sister to Notolychninae. These two clades together were recovered as the sister group to the Gymnoscopelinae. Combined, these three subfamilies were recovered as the sister group to a clade composed of a monophyletic Diaphinae sister to the traditional Myctophinae. Our results corroborate recent multilocus molecular studies that infer a polyphyletic Myctophum in Myctophinae, and a para- or polyphyletic Lampanyctus and Nannobrachium within Lampanyctinae. We resurrect Dasyscopelus and Ctenoscopelus for the independent clades traditionally classified as species of Myctophum, and we place Nannobrachium into the synonymy of Lampanyctus.
Assuntos
Peixes/anatomia & histologia , Peixes/classificação , Genômica , Filogenia , Animais , Sequência de Bases , Ecossistema , Peixes/genética , Funções Verossimilhança , Análise de Sequência de DNARESUMO
Pentabromopseudilin (PBrP) is a marine antibiotic isolated from the marine bacteria Pseudomonas bromoutilis and Alteromonas luteoviolaceus. PBrP exhibits antimicrobial, anti-tumour, and phytotoxic activities. In mammalian cells, PBrP is known to act as a reversible and allosteric inhibitor of myosin Va (MyoVa). In this study, we report that PBrP is a potent inhibitor of transforming growth factor-ß (TGF-ß) activity. PBrP inhibits TGF-ß-stimulated Smad2/3 phosphorylation, plasminogen activator inhibitor-1 (PAI-1) protein production and blocks TGF-ß-induced epithelial-mesenchymal transition in epithelial cells. PBrP inhibits TGF-ß signalling by reducing the cell-surface expression of type II TGF-ß receptor (TßRII) and promotes receptor degradation. Gene silencing approaches suggest that MyoVa plays a crucial role in PBrP-induced TßRII turnover and the subsequent reduction of TGF-ß signalling. Because, TGF-ß signalling is crucial in the regulation of diverse pathophysiological processes such as tissue fibrosis and cancer development, PBrP should be further explored for its therapeutic role in treating fibrotic diseases and cancer.
Assuntos
Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Miosina Tipo V/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirróis/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Alteromonas/química , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Células HEK293 , Células Hep G2 , Humanos , Vison , Estrutura Molecular , Miosina Tipo V/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Pseudomonas/química , Pirróis/química , Pirróis/isolamento & purificação , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta/metabolismoRESUMO
Adaptive choice behavior depends critically on identifying and learning from outcome-predicting cues. We hypothesized that attention may be preferentially directed toward certain outcome-predicting cues. We studied this possibility by analyzing event-related potential (ERP) responses in humans during a probabilistic decision-making task. Participants viewed pairs of outcome-predicting visual cues and then chose to wager either a small (i.e., loss-minimizing) or large (i.e., gain-maximizing) amount of money. The cues were bilaterally presented, which allowed us to extract the relative neural responses to each cue by using a contralateral-versus-ipsilateral ERP contrast. We found an early lateralized ERP response, whose features matched the attention-shift-related N2pc component and whose amplitude scaled with the learned reward-predicting value of the cues as predicted by an attention-for-reward model. Consistently, we found a double dissociation involving the N2pc. Across participants, gain-maximization positively correlated with the N2pc amplitude to the most reliable gain-predicting cue, suggesting an attentional bias toward such cues. Conversely, loss-minimization was negatively correlated with the N2pc amplitude to the most reliable loss-predicting cue, suggesting an attentional avoidance toward such stimuli. These results indicate that learned stimulus-reward associations can influence rapid attention allocation, and that differences in this process are associated with individual differences in economic decision-making performance.
Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Potenciais Evocados/fisiologia , Recompensa , Percepção Visual/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Sinais (Psicologia) , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Adulto JovemRESUMO
Success in many decision-making scenarios depends on the ability to maximize gains and minimize losses. Even if an agent knows which cues lead to gains and which lead to losses, that agent could still make choices yielding suboptimal rewards. Here, by analyzing event-related potentials (ERPs) recorded in humans during a probabilistic gambling task, we show that individuals' behavioral tendencies to maximize gains and to minimize losses are associated with their ERP responses to the receipt of those gains and losses, respectively. We focused our analyses on ERP signals that predict behavioral adjustment: the frontocentral feedback-related negativity (FRN) and two P300 (P3) subcomponents, the frontocentral P3a and the parietal P3b. We found that, across participants, gain maximization was predicted by differences in amplitude of the P3b for suboptimal versus optimal gains (i.e., P3b amplitude difference between the least good and the best gains). Conversely, loss minimization was predicted by differences in the P3b amplitude to suboptimal versus optimal losses (i.e., difference between the worst and the least bad losses). Finally, we observed that the P3a and P3b, but not the FRN, predicted behavioral adjustment on subsequent trials, suggesting a specific adaptive mechanism by which prior experience may alter ensuing behavior. These findings indicate that individual differences in gain maximization and loss minimization are linked to individual differences in rapid neural responses to monetary outcomes.
Assuntos
Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Retroalimentação Psicológica , Jogo de Azar , Recompensa , Adolescente , Adulto , Sinais (Psicologia) , Potenciais Evocados/fisiologia , Feminino , Jogos Experimentais , Humanos , Masculino , Valor Preditivo dos Testes , Probabilidade , Estatística como Assunto , Adulto JovemRESUMO
The nuclear receptor DAF-12 has roles in normal development, the decision to pursue dauer development in unfavorable conditions, and the modulation of adult aging. Despite the biologic importance of DAF-12, target genes for this receptor are largely unknown. To identify DAF-12 targets, we performed chromatin immunoprecipitation followed by hybridization to whole-genome tiling arrays. We identified 1,175 genomic regions to be bound in vivo by DAF-12, and these regions are enriched in known DAF-12 binding motifs and act as DAF-12 response elements in transfected cells and in transgenic worms. The DAF-12 target genes near these binding sites include an extensive network of interconnected heterochronic and microRNA genes. We also identify the genes encoding components of the miRISC, which is required for the control of target genes by microRNA, as a target of DAF-12 regulation. During reproductive development, many of these target genes are misregulated in daf-12(0) mutants, but this only infrequently results in developmental phenotypes. In contrast, we and others have found that null daf-12 mutations enhance the phenotypes of many miRISC and heterochronic target genes. We also find that environmental fluctuations significantly strengthen the weak heterochronic phenotypes of null daf-12 alleles. During diapause, DAF-12 represses the expression of many heterochronic and miRISC target genes, and prior work has demonstrated that dauer formation can suppress the heterochronic phenotypes of many of these target genes in post-dauer development. Together these data are consistent with daf-12 acting to ensure developmental robustness by committing the animal to adult or dauer developmental programs despite variable internal or external conditions.
Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Redes Reguladoras de Genes/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sítios de Ligação/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação/genéticaRESUMO
The enzymes of the non-mevalonate pathway for isoprenoid biosynthesis have been identified as attractive targets with novel modes of action for the development of herbicides for crop protection and agents against infectious diseases. This pathway is present in many pathogenic organisms and plants, but absent in mammals. By using high-throughput screening, we identified highly halogenated marine natural products, the pseudilins, to be inhibitors of the third enzyme, IspD, in the pathway. Their activity against the IspD enzymes from Arabidopsis thaliana and Plasmodium vivax was determined in photometric and NMR-based assays. Cocrystal structures revealed that pseudilins bind to an allosteric pocket by using both divalent metal ion coordination and halogen bonding. The allosteric mode of action for preventing cosubstrate (CTP) binding at the active site was elucidated. Pseudilins show herbicidal activity in plant assays and antiplasmodial activity in cell-based assays.
Assuntos
Produtos Biológicos/metabolismo , Ácido Mevalônico/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Protozoários/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Regulação Alostérica , Sítio Alostérico , Arabidopsis/enzimologia , Sítios de Ligação , Produtos Biológicos/química , Halogenação , Herbicidas/química , Herbicidas/metabolismo , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Proteínas de Plantas/antagonistas & inibidores , Plasmodium vivax/enzimologia , Estrutura Terciária de Proteína , Proteínas de Protozoários/antagonistas & inibidoresRESUMO
Finding a mate is of the utmost importance for organisms, and the traits associated with successfully finding one can be under strong selective pressures. In habitats where biomass and population density is often low, like the enormous open spaces of the deep sea, animals have evolved many adaptations for finding mates. One convergent adaptation seen in many deep-sea fishes is sexual dimorphism in olfactory organs, where, relative to body size, males have evolved greatly enlarged olfactory organs compared to females. Females are known to give off chemical cues such as pheromones, and these chemical stimuli can traverse long distances in the stable, stratified water of the deep sea and be picked up by the olfactory organs of males. This adaptation is believed to help males in multiple lineages of fishes find mates in deep-sea habitats. In this study, we describe the first morphological evidence of sexual dimorphism in the olfactory organs of lanternfishes (Myctophidae) in the genus Loweina. Lanternfishes are one of the most abundant vertebrates in the deep sea and are hypothesized to use visual signals from bioluminescence for mate recognition or mate detection. Bioluminescent cues that are readily visible at distances as far as 10 m in the aphotic deep sea are likely important for high population density lanternfish species that have high mate encounter rates. In contrast, myctophids found in lower density environments where species encounter rates are lower, like those in Loweina, likely benefit from longer-range chemical or olfactory cues for finding and identifying mates.
Assuntos
Peixes , Caracteres Sexuais , Animais , Feminino , Masculino , Peixes/anatomia & histologia , EcossistemaRESUMO
PURPOSE: Our study aimed to evaluate the effects of lidocaine sprayed onto the larynx and/or injected into the tracheal tube cuff to decrease the incidence of cough at extubation and postoperative sore throat. METHODS: One hundred twenty women scheduled for gynecological surgery < 120 min in duration were enrolled in this randomized double-blind prospective study. Prior to tracheal intubation, 4% lidocaine or 0.9% saline was sprayed onto the patients' supra- and subglottic areas. After tracheal intubation, the tracheal tube cuff was filled with either an alkalinized 2% lidocaine solution or 0.9% saline. This resulted in four groups: spray-cuff, spray-saline, saline-cuff, and saline-saline. A logistic regression comprising the two factors was used for analysis. The primary outcome was the incidence of cough at extubation. The secondary outcome was the incidence and severity of sore throat reported by patients at 15 min, 60 min, and 24 hr after tracheal extubation. RESULTS: Cough occurred in 42%, 24%, 63%, and 69% of patients in the spray-cuff, spray-saline, saline-cuff, and saline-saline groups, respectively. The use of lidocaine spray decreased the incidence of cough at extubation (odds ratio = 0.256; 95% confidence interval 0.118 to 0.554; P < 0.001); however, the use of intracuff alkalinized lidocaine had no impact on the occurrence of cough (P = 0.471). Severity of sore throat was clinically low (visual analog scale [VAS] ≤ 3) in all groups. No significant difference was observed in hoarseness, dysphagia, nausea, or vomiting. CONCLUSION: Sprayed lidocaine decreases the incidence of cough at tracheal extubation in surgeries of less than two hours. The use of alkalinized lidocaine into high-volume/low-pressure endotracheal cuffs had no impact on decreasing the incidence of cough or pain.
Assuntos
Extubação/métodos , Anestésicos Locais/administração & dosagem , Tosse/prevenção & controle , Lidocaína/administração & dosagem , Adulto , Anestésicos Locais/uso terapêutico , Tosse/epidemiologia , Tosse/etiologia , Método Duplo-Cego , Feminino , Humanos , Incidência , Intubação Intratraqueal/efeitos adversos , Intubação Intratraqueal/métodos , Laringe , Lidocaína/química , Modelos Logísticos , Pessoa de Meia-Idade , Medição da Dor , Faringite/epidemiologia , Faringite/etiologia , Faringite/prevenção & controle , Estudos Prospectivos , Índice de Gravidade de Doença , Fatores de TempoRESUMO
Here, we report that the natural compound pentachloropseudilin (PClP) acts as a reversible and allosteric inhibitor of myosin ATPase and motor activity. IC(50) values are in the range from 1 to 5 µm for mammalian class-1 myosins and greater than 90 µm for class-2 and class-5 myosins, and no inhibition was observed with class-6 and class-7 myosins. We show that in mammalian cells, PClP selectively inhibits myosin-1c function. To elucidate the structural basis for PClP-induced allosteric coupling and isoform-specific differences in the inhibitory potency of the compound, we used a multifaceted approach combining direct functional, crystallographic, and in silico modeling studies. Our results indicate that allosteric inhibition by PClP is mediated by the combined effects of global changes in protein dynamics and direct communication between the catalytic and allosteric sites via a cascade of small conformational changes along a conserved communication pathway.
Assuntos
Dictyostelium/enzimologia , Hidrocarbonetos Clorados/química , Modelos Moleculares , Miosinas/antagonistas & inibidores , Miosinas/química , Pirróis/química , Regulação Alostérica , Animais , Galinhas , Coelhos , RatosRESUMO
Extreme abiotic factors in deep-sea environments, such as near-freezing temperatures, low light, and high hydrostatic pressure, drive the evolution of adaptations that allow organisms to survive under these conditions. Pelagic and benthopelagic fishes that have invaded the deep sea face physiological challenges from increased compression of gasses at depth, which limits the use of gas cavities as a buoyancy aid. One adaptation observed in deep-sea fishes to increase buoyancy is a decrease of high-density tissues. In this study, we analyze mineralization of high-density skeletal tissue in rattails (family Macrouridae), a group of widespread benthopelagic fishes that occur from surface waters to greater than 7000 m depth. We test the hypothesis that rattail species decrease bone density with increasing habitat depth as an adaptation to maintaining buoyancy while living under high hydrostatic pressures. We performed micro-computed tomography (micro-CT) scans on 15 species and 20 specimens of rattails and included two standards of known hydroxyapatite concentration (phantoms) to approximate voxel brightness to bone density. Bone density was compared across four bones (eleventh vertebra, lower jaw, pelvic girdle, and first dorsal-fin pterygiophore). On average, the lower jaw was significantly denser than the other bones. We found no correlation between bone density and depth or between bone density and phylogenetic relationships. Instead, we observed that bone density increases with increasing specimen length within and between species. This study adds to the growing body of work that suggests bone density can increase with growth in fishes, and that bone density does not vary in a straightforward way with depth.
RESUMO
BACKGROUND: Rods and cones are photoreceptor neurons in the retina that are required for visual sensation in vertebrates, wherein the perception of vision is initiated when these neurons respond to photons in the light stimuli. The photoreceptor cell is structurally studied as outer segments (OS) and inner segments (IS) where proper protein sorting, localization, and compartmentalization are critical for phototransduction, visual function, and survival. In human retinal diseases, improper protein transport to the OS or mislocalization of proteins to the IS and other cellular compartments could lead to impaired visual responses and photoreceptor cell degeneration that ultimately cause loss of visual function. RESULTS: Therefore, studying and identifying mechanisms involved in facilitating and maintaining proper protein transport in photoreceptor cells would help our understanding of pathologies involving retinal cell degeneration in inherited retinal dystrophies, age-related macular degeneration, and Usher Syndrome. CONCLUSIONS: Our mini-review will discuss mechanisms of protein transport within photoreceptors and introduce a novel role for an unconventional motor protein, MYO1C, in actin-based motor transport of the visual chromophore Rhodopsin to the OS, in support of phototransduction and visual function.
Assuntos
Degeneração Retiniana , Visão Ocular , Animais , Humanos , Transporte Proteico/fisiologia , Retina , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismoRESUMO
Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
Assuntos
Peste , Humanos , Peste/epidemiologia , Peste/genética , Pandemias/história , Metagenômica , Genoma Bacteriano , FilogeniaRESUMO
BACKGROUND: There are growing reports of United States (US) residents traveling overseas for medical care, but empirical data about medical tourism are limited. OBJECTIVE: To characterize the businesses and business practices of entities promoting medical tourism and the types and costs of procedures being offered. DESIGN, PARTICIPANTS, AND OUTCOMES: Between June and August 2008, we conducted a telephone survey of all businesses engaged in facilitating overseas medical travel for US residents. We collected information from each company including: the number of employees; number of patients referred overseas; medical records security processes; destinations to which patients were referred; treatments offered; treatment costs; and whether patient outcomes were collected. RESULTS: We identified 63 medical tourism companies and 45 completed our survey (71%). Companies had a mean of 9.8 employees and had referred an average of 285 patients overseas (a total of approximately 13,500 patients). 35 (79%) companies reported requiring accreditation of foreign providers, 22 (50%) collected patient outcome data, but only 17 (39%) described formal medical records security policies. The most common destinations were India (23 companies, 55%), Costa Rica (14, 33%), and Thailand (12, 29%). The most common types of care included orthopedics (32 companies, 73%), cardiac care (23, 52%), and cosmetic surgery (29, 66%). 20 companies (44%) offered treatments not approved for use in the US--most commonly stem cell therapy. Average costs for common procedures, CABG ($18,600) and knee arthroplasty ($10,800), were similar to previous reports. CONCLUSIONS: The number of Americans traveling overseas for medical care with assistance from medical tourism companies is relatively small. Attention to medical records security and patient outcomes is variable and cost-savings are dependent on US prices. That said, overseas medical care can be a reasonable alternative for price sensitive patients in need of relatively common, elective medical procedures.
Assuntos
Acessibilidade aos Serviços de Saúde/tendências , Turismo Médico/tendências , Características de Residência , Viagem/tendências , Coleta de Dados/métodos , Procedimentos Cirúrgicos Eletivos/economia , Procedimentos Cirúrgicos Eletivos/normas , Procedimentos Cirúrgicos Eletivos/tendências , Acessibilidade aos Serviços de Saúde/economia , Humanos , Marketing/economia , Marketing/métodos , Marketing/tendências , Prontuários Médicos/economia , Prontuários Médicos/normas , Turismo Médico/economia , Qualidade da Assistência à Saúde/economia , Qualidade da Assistência à Saúde/normas , Qualidade da Assistência à Saúde/tendências , Viagem/economia , Estados UnidosRESUMO
Despite the basic premise of behavioral medicine that understanding and treatment of physical well-being require a full appreciation of the confluence of micro-, molar-, and macro-variables, the field tends to focus on linear, causal relationships. In this paper, we argue that more attention be given to a dynamic matrix approach, which assumes that biological, psychological, and social elements are interconnected and continually influence each other (consistent with the biopsychosocial model). To illustrate, the authors draw from their independent and collaborative research programs on overlapping cardiac risk factors, symptom interpretation, and treatment delay for cardiac care and recovery from heart disease. "Cabling" across biological, psychological, and social variables is considered as a transformative strategy for medicine and the other health-related disciplines.