Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Neural Plast ; 2018: 5851914, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275822

RESUMO

The regenerative capacity of CNS tracts has ever been a great hurdle to regenerative medicine. Although recent studies have described strategies to stimulate retinal ganglion cells (RGCs) to regenerate axons through the optic nerve, it still remains to be elucidated how these therapies modulate the inhibitory environment of CNS. Thus, the present work investigated the environmental content of the repulsive axon guidance cues, such as Sema3D and its receptors, myelin debris, and astrogliosis, within the regenerating optic nerve of mice submitted to intraocular inflammation + cAMP combined to conditional deletion of PTEN in RGC after optic nerve crush. We show here that treatment was able to promote axonal regeneration through the optic nerve and reach visual targets at twelve weeks after injury. The Regenerating group presented reduced MBP levels, increased microglia/macrophage number, and reduced astrocyte reactivity and CSPG content following optic nerve injury. In addition, Sema3D content and its receptors are reduced in the Regenerating group. Together, our results provide, for the first time, evidence that several regenerative repulsive signals are reduced in regenerating optic nerve fibers following a combined therapy. Therefore, the treatment used made the CNS microenvironment more permissive to regeneration.


Assuntos
Compressão Nervosa/efeitos adversos , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/patologia , Nervo Óptico/patologia , Nervo Óptico/fisiologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nervo Óptico/ultraestrutura , Traumatismos do Nervo Óptico/metabolismo , Retina/metabolismo , Retina/patologia , Retina/ultraestrutura
2.
Methods ; 99: 28-36, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26361830

RESUMO

Polymeric biomaterials are often used for stimulating nerve regeneration. Among different conduits, poly(lactide acid) - PLA polymer is considered to be a good substrate due to its biocompatibility and resorbable characteristics. This polymer is an aliphatic polyester which has been mostly used in biomedical application. It is an organic compound with low allergenic potential, low toxicity, high biocompatibility and predictable kinetics of degradation. In this study we fabricated and evaluated a PLA microporous hollow fiber as a conduit for its ability to bridge a nerve gap in a mouse sciatic nerve injury model. The PLA conduit was prepared from a polymer solution, throughout extrusion technique. The left sciatic nerve of C57BL/6 mouse was transected and the nerve stumps were placed into a resorbable PLA (PLA group) or a PCL conduit (PCL group), n=5 each group. We have also used another group in which the nerves were repaired by autograft (autograft group, n=5). Motor function was analyzed according to sciatic functional index (SFI). After 56days, the regenerated nerves were processed for light and electron microscopy and morphometric analyses were performed. A quantitative analysis of regenerated nerves showed significant increase in the number of myelinated fibers and blood vessels in animals that received PLA conduit. The PLA group exhibited better overall tissue organization compared to other groups. Presenting well-organized bundles, many regenerating clusters composed of preserved nerve fibers surrounded by layers of compacted perineurium-like cells. Also the SFI revealed a significant improvement in functional recovery. This work suggests that PLA conduits are suitable substrate for cell survival and it provides an effective strategy to be used to support axonal growth becoming a potential alternative to autograft.


Assuntos
Regeneração Nervosa , Poliésteres/química , Nervo Isquiático/fisiopatologia , Alicerces Teciduais/química , Animais , Sobrevivência Celular , Células Cultivadas , Estudos de Avaliação como Assunto , Implantes Experimentais , Masculino , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/terapia , Recuperação de Função Fisiológica , Células de Schwann/fisiologia , Células de Schwann/ultraestrutura
3.
Mediators Inflamm ; 2015: 251204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25918475

RESUMO

Traumatic injury to the central nervous system (CNS) or the peripheral nervous system (PNS) triggers a cascade of events which culminate in a robust inflammatory reaction. The role played by inflammation in the course of degeneration and regeneration is not completely elucidated. While, in peripheral nerves, the inflammatory response is assumed to be essential for normal progression of Wallerian degeneration and regeneration, CNS trauma inflammation is often associated with poor recovery. In this review, we discuss key mechanisms that trigger the inflammatory reaction after nervous system trauma, emphasizing how inflammations in both CNS and PNS differ from each other, in terms of magnitude, cell types involved, and effector molecules. Knowledge of the precise mechanisms that elicit and maintain inflammation after CNS and PNS tissue trauma and their effect on axon degeneration and regeneration is crucial for the identification of possible pharmacological drugs that can positively affect the tissue regenerative capacity.


Assuntos
Sistema Nervoso Central/patologia , Inflamação/patologia , Doenças do Sistema Nervoso/patologia , Sistema Nervoso Periférico/patologia , Degeneração Walleriana , Animais , Axônios/patologia , Galectina 3/metabolismo , Humanos , Macrófagos/imunologia , Regeneração Nervosa , Neutrófilos/imunologia , Regeneração , Medula Espinal/patologia
4.
Proc Natl Acad Sci U S A ; 109(23): 9149-54, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22615390

RESUMO

The mature optic nerve cannot regenerate when injured, leaving victims of traumatic nerve damage or diseases such as glaucoma with irreversible visual losses. Recent studies have identified ways to stimulate retinal ganglion cells to regenerate axons part-way through the optic nerve, but it remains unknown whether mature axons can reenter the brain, navigate to appropriate target areas, or restore vision. We show here that with adequate stimulation, retinal ganglion cells are able to regenerate axons the full length of the visual pathway and on into the lateral geniculate nucleus, superior colliculus, and other visual centers. Regeneration partially restores the optomotor response, depth perception, and circadian photoentrainment, demonstrating the feasibility of reconstructing central circuitry for vision after optic nerve damage in mature mammals.


Assuntos
Axônios/fisiologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Nervo Óptico/fisiologia , Regeneração/fisiologia , Células Ganglionares da Retina/fisiologia , Zimosan/farmacologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Ritmo Circadiano/fisiologia , AMP Cíclico/metabolismo , Dependovirus , Deleção de Genes , Vetores Genéticos/genética , Corpos Geniculados/fisiologia , Integrases/metabolismo , Camundongos , Nervo Óptico/citologia , PTEN Fosfo-Hidrolase/genética , Células Ganglionares da Retina/citologia , Colículos Superiores/fisiologia , Zimosan/administração & dosagem
5.
Exp Neurol ; 377: 114785, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670250

RESUMO

Spinal cord injury (SCI) results from various mechanisms that damage the nervous tissue and the blood-brain barrier, leading to sensory and motor function loss below the injury site. Unfortunately, current therapeutic approaches for SCI have limited efficacy in improving patients outcomes. Galectin-3, a protein whose expression increases after SCI, influences the neuroinflammatory response by favoring pro-inflammatory M1 macrophages and microglia, while inhibiting pro-regenerative M2 macrophages and microglia, which are crucial for inflammation resolution and tissue regeneration. Previous studies with Galectin-3 knock-out mice demonstrated enhanced motor recovery after SCI. The M1/M2 balance is strongly influenced by the predominant lymphocytic profiles (Th1, Th2, T Reg, Th17) and cytokines and chemokines released at the lesion site. The present study aimed to investigate how the absence of galectin-3 impacts the adaptive immune system cell population dynamics in various lymphoid spaces following a low thoracic spinal cord compression injury (T9-T10) using a 30 g vascular clip for one minute. It also aimed to assess its influence on the functional outcome in wild-type (WT)and Galectin-3 knock-out (GALNEG) mice. Histological analysis with hematoxylin-eosin and Luxol Fast Blue staining revealed that WT and GALNEG animals exhibit similar spinal cord morphology. The absence of galectin-3 does not affect the common neuroanatomy shared between the groups prompting us to analyze outcomes between both groups. Following our crush model, both groups lost motor and sensory functions below the lesion level. During a 42-day period, GALNEG mice demonstrated superior locomotor recovery in the Basso Mouse Scale (BMS) gait analysis and enhanced motor coordination performance in the ladder rung walk test (LRW) compared to WT mice. GALNEG mice also exhibited better sensory recovery, and their electrophysiological parameters suggested a higher number of functional axons with faster nerve conduction. Seven days after injury, flow cytometry of thymus, spleen, and blood revealed an increased number of T Reg and Th2 cells, accompanied by a decrease in Th1 and Th17 cells in GALNEG mice. Immunohistochemistry conducted on the same day exhibited an increased number of Th2 and T Reg cells around the GALNEG's spinal cord lesion site. At 42-day dpi immunohistochemistry analyses displayed reduced astrogliosis and greater axon preservation in GALNEG's spinal cord seem as a reduction of GFAP immunostaining and an increase in NFH immunostaining, respectively. In conclusion, GALNEG mice exhibited better functional recovery attributed to the milder pro-inflammatory influence, compensated by a higher quantity of T Reg and Th2 cells. These findings suggest that galectin-3 plays a crucial role in the immune response after spinal cord injury and could be a potential target for clinical therapeutic interventions.


Assuntos
Galectina 3 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Galectina 3/metabolismo , Galectina 3/genética , Camundongos , Linfócitos/metabolismo , Feminino , Masculino
6.
Neurotrauma Rep ; 5(1): 721-737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144452

RESUMO

Traumatic spinal cord injury (SCI) causes debilitating motor and sensory deficits that impair functional performance, and physical rehabilitation is currently the only established therapeutic reality in the clinical setting. In this study, we aimed to assess the effect of exercise of different volume and timing of intervention on functional recovery and neuromuscular regeneration in a mouse model of compressive SCI. Mice were assigned to one of four groups: laminectomy only (SHAM); injured, without treadmill training (SCI); injured, treadmill trained for 10 min until day 56 postinjury (TMT1); and injured, treadmill trained for two 10-min cycles with a 10-min pause between them until day 28 postinjury followed by the TMT1 protocol until day 56 postinjury (TMT3). On day 7 postinjury, animals started an eight-week treadmill-training exercise protocol and were trained three times a week. TMT3 mice had the best results in terms of neuroregeneration, functional recovery, and muscle plasticity as measured by functional and morphometric parameters. In conclusion, the volume of exercise can modulate the quality of the regenerative response to injury, when started in the acute phase and adjusted according to the inflammatory window.

7.
Eur J Neurosci ; 37(10): 1682-90, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23406314

RESUMO

Wallerian degeneration (WD) comprises a series of events that includes activation of non-neuronal cells and recruitment of immune cells, creating an inflammatory milieu that leads to extensive nerve fragmentation and subsequent clearance of the myelin debris, both of which are necessary prerequisites for effective nerve regeneration. Previously, we documented accelerated axon regeneration in animals lacking galectin-3 (Gal-3), a molecule associated with myelin clearance. To clarify the mechanisms underlying this enhanced regeneration, we focus here on the early steps of WD following sciatic nerve crush in Gal-3(-/-) mice. Using an in vivo model of nerve degeneration, we observed that removal of myelin debris is more efficient in Gal-3(-/-) than in wild-type (WT) mice; we next used an in vitro phagocytosis assay to document that the phagocytic potential of macrophages and Schwann cells was enhanced in the Gal-3(-/-) mice. Moreover, both RNA and protein levels for the pro-inflammatory cytokines IL-1ß and TNF-α, as well as for Toll-like receptor (TLR)-2 and -4, show robust increases in injured nerves from Gal-3(-/-) mice compared to those from WT mice. Collectively, these data indicate that the lack of Gal-3 results in an augmented inflammatory profile that involves the TLR-cytokine pathway, and increases the phagocytic capacity of Schwann cells and macrophages, which ultimately contributes to speeding the course of WD.


Assuntos
Citocinas/metabolismo , Galectina 3/genética , Nervo Isquiático/lesões , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Degeneração Walleriana/metabolismo , Animais , Citocinas/genética , Galectina 3/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/metabolismo , Compressão Nervosa , Fagocitose , Células de Schwann/metabolismo , Células de Schwann/fisiologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Transcrição Gênica , Degeneração Walleriana/genética
8.
Neural Regen Res ; 18(1): 23-30, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35799504

RESUMO

Injuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury. Many strategies are tested in preclinical studies that focus on ameliorating the functional outcomes after spinal cord injury. Among these, molecular compounds are currently being used for neurological recovery, with promising results. These molecules target the axon collapsed growth cone, the inhibitory microenvironment, the survival of neurons and glial cells, and the re-establishment of lost connections. In this review we focused on molecules that are being used, either in preclinical or clinical studies, to treat spinal cord injuries, such as drugs, growth and neurotrophic factors, enzymes, and purines. The mechanisms of action of these molecules are discussed, considering traumatic spinal cord injury in rodents and humans.

9.
Brain Res Bull ; 166: 150-160, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232742

RESUMO

Recently, regeneration of CNS tracts has been partially accomplished by strategies of intrinsic neuronal growth stimulation. However, restoration of function is dependent on proper myelination of regenerating axons. Previous work from our group (Goulart et al., 2018) has shown an increase in oligodendrocyte staining in the regenerating optic nerve, 2 weeks after crush, in animals that were submitted to conditional deletion of pten gene in retinal ganglion cells and intravitreal injection of zymosan + cAMP. Thus, in the present study we aimed to investigate the maturation of the oligodendroglial lineage and myelination during the regeneration of the optic nerve under the same conditions of our previous work. We showed that the combined treatment promoted an increase of myelinated fibers within the optic nerve, 12 weeks after lesion, as well as an increase in Sox10 positive cells. Early-OPCs, positive to A2B5, were also increased at 12 weeks, whereas O4 positive, late-OPCs, were increased from 2 until 12 weeks after crush. At 12 weeks after crush, the optic nerve of Regenerating group presented more CC1 positive oligodendrocytes and increased MRF positive myelinating oligodendrocytes, culminating in CTB traced regenerating axons superimposed to MBP staining, suggestive of myelination. Thus, our work showed that conditional deletion of pten gene in retinal ganglion cells and intravitreal inflammatory stimuli + cAMP stimulate full maturation of the olidodendroglial lineage, from OPC proliferation and differentiation to myelination of regenerating CNS axons.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Células Precursoras de Oligodendrócitos/fisiologia , Nervo Óptico/fisiologia , Remielinização/fisiologia , Animais , Linhagem da Célula , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Oligodendrócitos/citologia , Nervo Óptico/citologia
10.
Cell Tissue Res ; 342(2): 179-89, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20878337

RESUMO

In a previous study, we analyzed and described the features of the degeneration of the protocerebral tract (PCT) of the crustacean Ucides cordatus, after the extirpation of the eyestalk. In that study, among axons with axoplasmic degeneration, cells with granules resembling blood cells (hemocytes) were seen. Therefore, in the present study, we characterized the circulating hemocytes and compared them with the cells recruited to a lesion, which was produced as in the former study. Using histochemistry, immunohistochemistry, and electron microscopy (transmission and scanning), we confirmed that circulating and recruited cells display a similar morphology. Therefore, in the crab, hemocytes were attracted to the lesion site in the acute stage of degeneration, appearing near local glial cells that showed signs of being responsive. Some of the attracted hemocytes displayed a morphology that was considered to be possibly activated blood cells. Also, the cells that migrated to the injured PCT displayed features, such as the presence of hydrolytic enzymes and an ability to phagocytize neural debris, similar to those of vertebrates. In summary, our results indicate that hemocytes were not only phagocytizing neural debris together with glial cells but also that they may be concerned with creating a favorable environment for regenerating events.


Assuntos
Braquiúros , Sistema Nervoso Central/patologia , Hemócitos/patologia , Lobo Óptico de Animais não Mamíferos/patologia , Degeneração Walleriana/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Axônios/ultraestrutura , Movimento Celular , Sistema Nervoso Central/lesões , Hemócitos/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Regeneração Nervosa/fisiologia , Neuroglia/patologia , Neuroglia/ultraestrutura , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/ultraestrutura , Fagocitose
11.
Brain Res ; 1726: 146494, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586628

RESUMO

Spinal cord injury (SCI) is considered a serious neurological disorder that can lead to severe sensory, motor and autonomic deficits. In this work, we investigated whether cell therapy associated with physical activity after mouse SCI could promote morphological and functional outcomes, using a lesion model established by our group. Mesenchymal stem cells (8 × 105 cells/2 µL) or DMEM (2 µL), were injected in the epicenter of the lesion at 7 days after SCI, and the mice started a moderate treadmill training 14 days after injury. Functional assessments were performed weekly up to 8 weeks after injury when the morphological analyses were also performed. Four injured groups were analyzed: DMEM (SCI plus DMEM injection), MSCT (SCI plus MSC injection), DMEM + TMT (SCI plus DMEM injection and treadmill training) and MSCT + TMT (SCI plus MSC injection and treadmill training). The animals that received the combined therapy (MSCT + TMT) were able to recover and maintained the better functional results throughout the analyzed period. The morphometric analysis from MSCT + TMT group evidenced a larger spared white matter area and a higher number of preserved myelinated fibers with the majority of them reaching the ideal G-ratio values, when compared to other groups. Ultrastructural analysis from this group, using transmission electron microscopy, showed better tissue preservation with few microcavitations and degenerating nerve fibers. Also, this group exhibited a significantly higher neurotrophin 4 (NT4) expression as compared to the other groups. The results provided by this study support the conclusion that the association of strategies is a potential therapeutic approach to treat SCI, with the possibility of translation into the clinical practice.


Assuntos
Terapia por Exercício , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Animais , Encéfalo/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Medula Espinal/ultraestrutura , Substância Branca/patologia
12.
J Neurosci Methods ; 177(1): 183-93, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19013194

RESUMO

Spinal cord injury (SCI) causes motor and sensory deficits that impair functional performance, and significantly impacts life expectancy and quality. Animal models provide a good opportunity to test therapeutic strategies in vivo. C57BL/6 mice were subjected to laminectomy at T9 and compression with a vascular clip (30g force, 1min). Two groups were analyzed: injured group (SCI, n=33) and laminectomy only (Sham, n=15). Locomotor behavior (Basso mouse scale-BMS and global mobility) was assessed weekly. Morphological analyses were performed by LM and EM. The Sham group did not show any morphofunctional alteration. All SCI animals showed flaccid paralysis 24h after injury, with subsequent improvement. The BMS score of the SCI group improved until the intermediate phase (2.037+/-1.198); the Sham animals maintained the highest BMS score (8.981+/-0.056), p<0.001 during the entire time. The locomotor speed was slower in the SCI animals (5.581+/-0.871) than in the Sham animals (15.80+/-1.166), p<0.001. Morphological analysis of the SCI group showed, in the acute phase, edema, hemorrhage, multiple cavities, fiber degeneration, cell death and demyelination. In the chronic phase we observed glial scarring, neuron death, and remyelination of spared axons by oligodendrocytes and Schwann cells. In conclusion, we established a simple, reliable, and inexpensive clip compression model in mice, with functional and morphological reproducibility and good validity. The availability of producing reliable injuries with appropriate outcome measures represents great potential for studies involving cellular mechanisms of primary injury and repair after traumatic SCI.


Assuntos
Modelos Animais de Doenças , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Morte Celular , Doenças Desmielinizantes/etiologia , Comportamento Exploratório , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Indóis , Laminectomia/métodos , Locomoção/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão/métodos , Atividade Motora/fisiologia , Reprodutibilidade dos Testes , Instrumentos Cirúrgicos/efeitos adversos , Vértebras Torácicas , Fatores de Tempo
13.
J Peripher Nerv Syst ; 14(4): 285-93, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20021570

RESUMO

The use of electromagnetic fields has been reported to enhance peripheral nerve regeneration. This study aimed to identify the effects of a prolonged protocol of low-frequency pulsed electromagnetic field (PEMF) on peripheral nerve regeneration. Thirty-four male Swiss mice (Mus musculus) were divided into PEMF (n = 17) and control (n = 17) groups. All animals underwent a unilateral sciatic-crush lesion, and the PEMF group was exposed to a 72-Hz, 2-G electromagnetic field for 30 min, five days a week, for three weeks. Functional analysis was carried out weekly. After three weeks, the animals were euthanized, and histological, morphometric, oxidative stress, and TGF-beta1 analyses were performed. Functional analysis showed no differences between the groups. Histological appearance was similar between PEMF and control nerves. Morphometric assessment showed that the PEMF nerves trended toward decreased regeneration. The levels of free radicals were more pronounced in PEMF nerves, but were not associated with an increase in the content of the TGF-beta1/Smad signaling pathway. Prolonged PEMF regimen leads to delayed histological peripheral nerve regeneration and increased oxidative stress but no loss of function recovery.


Assuntos
Magnetoterapia/métodos , Regeneração Nervosa/fisiologia , Nervo Isquiático/fisiopatologia , Neuropatia Ciática/fisiopatologia , Neuropatia Ciática/terapia , Animais , Imuno-Histoquímica , Masculino , Camundongos , Bainha de Mielina/patologia , Bainha de Mielina/fisiologia , Compressão Nervosa , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Estresse Oxidativo/fisiologia , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/patologia , Neuropatia Ciática/patologia , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Resultado do Tratamento
14.
Microsc Res Tech ; 71(3): 214-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18023055

RESUMO

Despite several reports on the morphology and functions associated with the morphometry of the vertebrate axoplasm cytoskeleton, the subject has not been thoroughly explored in invertebrates. In vertebrates, among many other functions, microtubules (MTs) serve as scaffolding for axon assembly, and neurofilaments (NFs) as the elements that determine the axon caliber. Intermediate filaments have never been described by electron microscopy in arthropods, although NF proteins have been revealed in the MT side-arms of the axoplasm of certain species, such as the crab Ucides cordatus. Thus, it is not known which elements of the cytoskeleton of invertebrates are responsible for determination of the axon caliber. We studied, by electron microscopy and morphometric analyses, the MT and axon area variability in differently sized axons of the protocerebral tract of the crab Ucides cordatus. Our results revealed differences in the distance between MTs, in MT density and number, and in the areas of differently sized axons. The number of MTs increases with the axon area, but this relationship is not directly proportional. Therefore, MT density is greater in smaller axons than in medium axons, similar to the morphometry of the vertebrate axon MT. The distance between MTs is, however, directly related to the axonal area. On the basis of the results shown here, and on previous reports by us and others, we suggest that MTs may be involved in the determination of the axon caliber, possibly due to the presence of NF proteins found in the side-arms.


Assuntos
Axônios/ultraestrutura , Braquiúros/ultraestrutura , Microtúbulos/ultraestrutura , Animais , Masculino , Microscopia Eletrônica , Microtúbulos/fisiologia , Neuroglia/ultraestrutura
15.
J Neurosci Methods ; 170(1): 130-9, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18291533

RESUMO

Experimental models of spinal cord (SC) lesion are essential for understanding a few of the primary and secondary mechanisms of injury and functional recovery of the central nervous system (CNS). We have developed an experimental model of SC injury in adult rats (n=32), that involves the use of a device (SC-STRAPPER) that straps the SC and promotes gradual and controlled SC injury similar to clinical compressive SC injuries. SC strapping is a less-invasive procedure in comparison to other SC injury models, and it performs compression with smaller infection risk and undetectable paravertebral or vertebral lesions. The survival of the rats was 100%, minimizing the suffering of the animals. We have analyzed the histopathological changes that occur during experimental SC compression, as well as the immunohistochemical labeling for glial fibrillary acidic protein (GFAP). Animals survived for 21 days being thereafter anesthetized and perfused with aldehydes. SC lesions were associated with motor deficits and local increase in GFAP immunolabeling proportionate to the severity of the compression. This experimental model represents a potential contribution for neuroscientific research, providing a low-cost and rather simple system of controllable and reproducible SC experimental damage.


Assuntos
Sistema Nervoso Central/lesões , Traumatismos da Medula Espinal/patologia , Animais , Modelos Animais de Doenças , Espaço Epidural , Proteína Glial Fibrilar Ácida/metabolismo , Membro Posterior/inervação , Membro Posterior/fisiologia , Imuno-Histoquímica , Ligadura , Locomoção/fisiologia , Masculino , Regeneração Nervosa/fisiologia , Estimulação Física , Ratos , Ratos Wistar , Compressão da Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo
16.
Brain Res ; 1222: 201-6, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-18586229

RESUMO

After nerve crushing or section, the distal stump undergoes morphological changes described as Wallerian degeneration (WD). Immediately after nerve injury, early ultrastructural alterations occur in the terminal boutons, a process known as terminal degeneration (TD), which occurs before degeneration of the axon and leads to electrophysiological impairment. In this study we investigated the presence of neurofilament (NF) proteins in TD and compared the results with degeneration in the optic nerve. Young adult Wistar rats were submitted to bilateral enucleation and perfused after 24 h, 48 h and 1 week. Optic nerves (ON) and superior colliculus (SC) segments were processed for electron microscopy (EM) and immunoelectron microscopy (IEM) for NF subunits. Analysis of ultrathin sections of SC, at 24 h, revealed terminals undergoing TD. At 48 h and 1 week after enucleation, there was a clear increase in the number of degenerating terminals. The cytoarchitecture of the optic nerve did not change considerably at 24 h, but it was progressively altered at 48 h and 1 week after enucleation, when we observed intense astrogliosis, and most fibers exhibited dark degeneration (DD). The IEM for the NF subunits of normal ON showed gold particles located along the filaments, but we did not observe labeling for neurofilament proteins in normal retinal terminals. However, 48 h after lesion, we observed immunogold particles for the NF proteins in fibers undergoing DD and on terminals undergoing TD. Therefore, we can conclude that NF proteins participate in the process of TD, and this event occurs before complete axonal degeneration, suggesting different mechanisms for TD and DD.


Assuntos
Microscopia Imunoeletrônica/métodos , Proteínas de Neurofilamentos/metabolismo , Retina , Degeneração Retiniana/patologia , Animais , Escuridão/efeitos adversos , Microscopia Eletrônica de Transmissão/métodos , Ratos , Ratos Wistar , Retina/metabolismo , Retina/patologia , Retina/ultraestrutura , Degeneração Retiniana/etiologia
17.
Neural Regen Res ; 13(6): 1046-1053, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29926832

RESUMO

In spite of advances in surgical care and rehabilitation, the consequences of spinal cord injury (SCI) are still challenging. Several experimental therapeutic strategies have been studied in the SCI field, and recent advances have led to the development of therapies that may act on the inhibitory microenvironment. Assorted lineages of stem cells are considered a good treatment for SCI. This study investigated the effect of systemic transplantation of mesenchymal stem cells (MSCs) in a compressive SCI model. Here we present results of the intraperitoneal route, which has not been used previously for MSC administration after compressive SCI. We used adult female C57BL/6 mice that underwent laminectomy at the T9 level, followed by spinal cord compression for 1 minute with a 30-g vascular clip. The animals were divided into five groups: sham (anesthesia and laminectomy but without compression injury induction), MSC i.p. (intraperitoneal injection of 8 × 105 MSCs in 500 µL of DMEM at 7 days after SCI), MSC i.v. (intravenous injection of 8 × 105 MSCs in 500 µL of DMEM at 7 days after SCI), DMEM i.p. (intraperitoneal injection of 500 µL of DMEM at 7 days after SCI), DMEM i.v. (intravenous injection of 500 µL of DMEM at 7 days after SCI). The effects of MSCs transplantation in white matter sparing were analyzed by luxol fast blue staining. The number of preserved fibers was counted in semithin sections stained with toluidine blue and the presence of trophic factors was analyzed by immunohistochemistry. In addition, we analyzed the locomotor performance with Basso Mouse Scale and Global Mobility Test. Our results showed white matter preservation and a larger number of preserved fibers in the MSC groups than in the DMEM groups. Furthermore, the MSC groups had higher levels of trophic factors (brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3 and neurotrophin-4) in the spinal cord and improved locomotor performance. Our results indicate that injection of MSCs by either intraperitoneal or intravenous routes results in beneficial outcomes and can be elected as a choice for SCI treatment.

18.
Brain Res ; 1700: 126-137, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016630

RESUMO

Diabetic retinopathy is the leading cause of acquired blindness in working-age individuals. Recent work has revealed that neurodegeneration occurs earlier than vascular insult and that distal optic nerve damage precedes retinal degeneration and vascular insult. Since we have shown that optic nerve degeneration is reduced after optic nerve crush in Galectin-3 knockout (Gal-3 -/-) mice, we decided to investigate whether Gal-3 -/- could relieve inflammation and preserve both neurons and the structure of the retina and optic nerve following 8 weeks of diabetes. Diabetes was induced in 2-month-old male C57/bl6 WT or Gal-3 -/- mice by a single injection of streptozotocin (160 mg/kg). Histomorphometric retinal analyses showed no gross difference, except for a reduced number of retinal ganglion cells in WT diabetic mice, correlated to increased apoptosis. In the optic nerve, Gal-3 -/- mice showed reduced neuroinflammation, suggested by the smaller number of Iba1+ cells, particularly the amoeboid profiles in the distal end. Furthermore, iNOS staining was reduced in the optic nerves of Gal-3 -/- mice, as well as GFAP in the distal segment of the optic nerve. Finally, optic nerve histomorphometric analyses revealed that the number of myelinated fibers was higher in the Gal-3 -/- mice and myelin was more rectilinear compared to WT diabetic mice. Therefore, the present study provided evidence that Gal-3 is a central target that stimulates neuroinflammation and impairs neurological outcomes in visual complications of diabetes. Our findings provide support for the clinical use of Gal-3 inhibitors against diabetic visual complications in the near future.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Galectina 3/deficiência , Inflamação/metabolismo , Neuroproteção/fisiologia , Nervo Óptico/metabolismo , Retina/metabolismo , Animais , Apoptose/fisiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Galectina 3/genética , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Nervo Óptico/patologia , Retina/patologia
19.
Neural Regen Res ; 13(10): 1811-1819, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136697

RESUMO

Poly(lactic acid) (PLA)-containing nerve guidance conduits (NGCs) are currently being investigated for nerve repair as an alternative to autograft, which leads to permanent functional impairment in the territory innervated by the removed nerve. Combination of polymers modifies the physical properties of the conduits, altering their nerve-guidance properties. Conduits made from PLA-only or combined with other polymers have been used successfully for nerve repair, but their efficiency has not been compared. We compared the morphological and functional outcomes of peripheral nerve repair by using NGCs made of poly(lactic acid) and combined or not with polycaprolactone (PLA/PCL) or polyvinylpyrrolidone (PLA/PVP). To assess the functional recovery, we employed a mechanical hyperalgesia analysis, sciatic functional index (SFI), and electroneuromyography. The mechanical hyperalgesia analysis showed that the PLA group improved more rapidly than the PLA/PVP and PLA/PCL groups; similarly, in the electroneuromyography assay, the PLA group exhibited higher amplitude than the PLA/PCL and PLA/PVP groups. However, the SFI improvement rates did not differ among the groups. Morphologically, the PLA group showed more vascularization, while the nerve fiber regeneration did not differ among the groups. In conclusion, the PLA-only conduits were superior to the other NGCs tested for nerve repair.

20.
J Neurosci Methods ; 161(2): 259-64, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17204334

RESUMO

Among the numerous ways of assessing regeneration after peripheral nerve lesions, the analysis of gait is one of the most important, because it shows the recovery of function, which is the ultimate goal of the repair machinery. The sciatic function index was introduced as a method to assess reinnervation after an experimental sciatic nerve lesion, and was adapted to the mouse model. The sciatic static index (SSI), is more simple and practical to perform, and is not so influenced by gait's velocity, but this method has not yet been adapted to the mouse model of sciatic lesion. We used 63 male Swiss mice (Mus musculus) to develop a formula to the sciatic static index in mice (SSIm). The animals were divided on three groups (control, transection and crush). They were evaluated at the preoperative and 7th, 14th, 21st, 28th, 35th and 42nd days postoperative by the ink track method (SFI), and by the acquisition of photographs of the plantar aspects of the injured and uninjured hind paws. The parameters evaluated were the 1-5 toe spread (TS), the 2-4 toe spread (ITS) and the distance between the tip of the third toe and the most posterior aspect of the paw (PL), on both methods. After verifying the temporal pattern of function, correlation and reproducibility of the measurements, we performed a multiple regression analysis using SFI values as dependent variable, and the TS, ITS and PL measured with the photo method as independent variables, and found the formula of the SSI for mice (SSIm). The three groups (control, transection and crush) had a characteristic pattern of dysfunction. The parameters measured in the ink and photo method had variable but significant correlations between them (P<0.000), but photo method of measurement showed a better reproducibility. The correlation between SFI and SSIm showed a high correlation coefficient (r=0.892, P<0.000), and demonstrates that SSIm can be used as an alternative method to assess the functional status relative of sciatic nerve activity in mice.


Assuntos
Pé/fisiopatologia , Transtornos Neurológicos da Marcha/classificação , Transtornos Neurológicos da Marcha/fisiopatologia , Indicadores Básicos de Saúde , Nervo Isquiático/fisiopatologia , Neuropatia Ciática/classificação , Neuropatia Ciática/fisiopatologia , Animais , Modelos Animais de Doenças , Marcha , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Masculino , Camundongos , Neuropatia Ciática/complicações , Neuropatia Ciática/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA